
Incomplete Markets and Self-Insurance

Jennifer La’O*

We now relax our very strong assumption of complete markets and consider models in which
agents face incomplete insurance markets. We will consider a savings problem of an individual
household facing an uncertain income stream. However, instead of being able to trade in a com-
plete Arrow-Debreu market of securities, this household is cut off from all insurance markets
and can only purchase non-negative amounts of a single risk-free asset. The absence of insur-
ance induces the household to adjust its asset holdings in order to “self-insure” against income
shocks.

This lecture builds on material found in Chapters 16 and 17 of Ljungqvist and Sargent (2004).

1 The Individual Household’s Problem

The household has the following preferences over consumption

E
∞∑
t=0

βtu(ct)

with β ∈ (0, 1). We assume u(c) satisfies the typical regularity conditions: it is continuous, strictly
increasing, strictly concave, continuously differentiable.

The agent is endowed with an infinite random sequence {yt}∞t=0 of the consumption good.
Each period, the endowment takes one of a finite number of values, indexed by s ∈ S. In partic-
ular the set of possible endowments is

y ∈ Y = {ȳ1, ȳ2, . . . ȳS}

where without loss of generality we assume

ȳ1 < ȳ2 < . . . < ȳS

We assume that the sequence of endowments are i.i.d. across time and drawn from the following
distribution

Pr(yt = ȳs) = πs

with
∑

πs = 1. Finally, there are no insurance markets.
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We assume that the household can hold non-negative amounts of a single risk-free asset that
has an exogenous net rate of return r. Throughout this lecture we assume (1 + r)β = 1. Note
that this interest rate is not endogenously determined as it has been in previous lectures, it is
just assumed to be equal to the discount rate. That is, we are considering a partial equilibrium
model. We will relax this assumption later.

The agent faces the sequence of budget constraints

ct + bt = yt +
1

1 + r
bt+1 (1)

where bt is the total amount of debt the consumer has at the beginning of period t (debt brought
into period t). The left hand side is the consumer’s consumption expenditures and its repayment
of debt. The right hand side is the consumer’s current realization of income and new issuances
of debt.

An alternative way of writing the household’s per-period budget constraint is to let at denote
the assets of the consumer at the beginning of in period t including the current realization of the
income process. That is, let:

at = −bt + yt

Substituting this into (1) we get

ct + (yt − at) = yt +
1

1 + r
(yt+1 − at+1)

ct − at =
1

1 + r
(yt+1 − at+1)

Therefore we may alternatively write the agent’s per-period budget constraint as

at+1 = (1 + r)(at − ct) + yt+1. (2)

We will switch back and forth between these conventions
We impose the constraint that assets must be non-negative by the end of every period: at −

ct ≥ 0. That is,
0 ≤ ct ≤ at

The constraint ct ≥ 0 is either imposed or comes from an Inada condition that limc→0 u
′(c) = ∞.

Given the consumer’s problem, the Bellman equation for the agent is given by

V (a) = max
c∈[0,a]

{
u(c) + β

∑
s∈S

πsV ((1 + r)(a− c) + ȳs)

}

One can show that the value function V (a) inherits the basic properties of u(c), that is, it is in-
creasing, strictly concave, and differentiable.
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2 Nonstochastic Endowment

While in the environment described above the household faced an uncertain income stream,
we first consider an environment in which there is no uncertainty over income. That is, yt may
vary over time, but all movements in income are known at time t = 0. Without uncertainty, the
question of insurance becomes moot.

For now let’s use our debt notation, where bt is the consumer’s debt brought into period t.
With this notation, the time t budget constraint is given by:

ct + bt = yt +
1

1 + r
bt+1. (3)

We will impose a no-borrowing constraint that debt cannot be positive, it can only be weakly
negative

bt+1 ≤ 0

That is, the household cannot borrow—it can only save. This no-borrowing constraint is more
stringent than the natural borrowing constraint when there are Arrow-Debreu securities, or
equivalently, one-period Arrow securities. Let us first consider this case.

2.1 The Natural Borrowing Constraint

We first solve for the optimal consumption path under what is called the natural borrowing con-
straint. The natural borrowing constraint in this economy is given by iterating (3) forward. Im-
posing the condition that ct ≥ 0, this gives us

bt ≤ b̄t ≡
∞∑
j=0

(
1

1 + r

)j

yt+j (4)

This is the maximal amount that the agent can borrow: the greatest amount feasible it can repay
based on future income.

Iteration on the budget constraint (3) and imposing the initial condition that b0 = 0, we
obtain:

∞∑
t=0

(
1

1 + r

)t

ct ≤
∞∑
t=0

(
1

1 + r

)t

yt. (5)

Therefore, the present discounted value of lifetime consumption is equal to the present dis-
counted value of lifetime income. Under the natural borrowing constraint, this is the only re-
striction that the budget constraints impose on the sequence of consumptio {ct}∞t=0, and this is
exactly the same single budget constraint we derived when markets were complete!

Intertemporal Budget Constraint with Arrow-Debrew securities. Pick an arbitrary scalar q0 >
0 and define qt recursively by

qt =
qt−1

1 + r
= ... =

q0
(1 + r)t

.
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Note that qt/qs represents the price of the period t consumption relative to period s consump-
tion. Without loss of generality, we normalize q0 = 1 so that qt = qt/q0. Then:

qt =
1

(1 + r)t

is the price of consumption at time t in terms of period 0 consumption.
With Arrow-Debreu securities, the household’s intertemporal budget constraint is given by

∞∑
t=0

qtct ≤
∞∑
t=0

qtyt

Therefore in the setting without uncertainty, the budget constraint with AD securities is equiva-
lent to the households intertemporal budget constraint with a natural borrowing limit, (5).

The household’s problem. Consider now the household’s problem of maximizing utility sub-
ject to (5). The first order conditions give us that

u′(ct) = β(1 + r)u′(ct+1)

as long as the natural borrowing constraint is slack. This can equivalently be written as:

u′(ct)

qt
= β

u′(ct+1)

qt+1

Using the fact that β(1 + r) = 1, we have that

ct = ct+1 = c̄, ∀t

[Parenthesis: Note that if instead β(1 + r) > 1, this would imply u′(ct) > u′(ct+1) so that
ct < ct+1; therefore consumption would grow over time. If on the other hand β(1 + r) < 1, this
would imply u′(ct) < u′(ct+1) so that ct > ct+1; therefore consumption would shrink over time.]

Substituting this solution into the budget constraint (5), we get that

1 + r

r
c̄ =

∞∑
t=0

(
1

1 + r

)t

yt

Therefore, consumption is given by a constant consumption level ct = c̄ given by

c̄ =
r

1 + r
x0, ∀t. (6)

where

x0 ≡
∞∑
t=0

(
1

1 + r

)t

yt =
∞∑
t=0

qtyt

Therefore, we get perfect consumption smoothing over time: the household’s consumption path
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is completely flat. In particular, the household consumes the annuity value of its wealth. We x0
the household’s wealth or “permanent income” at time 0: it is the present discounted value of
lifetime income. The household consumes the annuity value r/(1+r) of its wealth or permanent
income in every period, resulting in a perfectly flat consumption path.

Next we check whether under the optimal policy of the household the natural borrowing
constraint ever binds. First let’s solve for the household’s debt level at any period. We have that
bt is given by

bt = (1 + r)(ct−1 + bt−1 − yt−1)

Now iterating this constraint backward we get

bt = (1 + r)(ct−1 − yt−1) + (1 + r)2(ct−2 − yt−2) + (1 + r)3(ct−3 − yt−4) + · · ·

That is,

bt =

t−1∑
j=0

(1 + r)t−j(cj − yj)

= (1 + r)t
t−1∑
j=0

(
1

1 + r

)j

(cj − yj)

Plugging in the fact that consumption is constant every period, we get that:

bt = (1 + r)t
t−1∑
j=0

(
1

1 + r

)j

(c̄− yj)

= (1 + r)t

 t−1∑
j=0

(
1

1 + r

)j

c̄−
t−1∑
j=0

(
1

1 + r

)j

yj


= (1 + r)t

1 + r

r
c̄−

(
1

1 + r

)t 1 + r

r
c̄−

t−1∑
j=0

(
1

1 + r

)j

yj


= (1 + r)t

1 + r

r
c̄− (1 + r)t

t−1∑
j=0

(
1

1 + r

)j

yj −
1 + r

r
c̄

Finally, using the fact that the optimal consumption is given by the annuity value of permanent
income (6), we get that debt at time t is given by

bt = (1 + r)t

 ∞∑
j=0

(
1

1 + r

)j

yj −
t−1∑
j=0

(
1

1 + r

)j

yj

− 1 + r

r
c̄

= (1 + r)t

[ ∞∑
i=t

(
1

1 + r

)i

yi

]
− 1 + r

r
c̄
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which we may rewrite (by changing the index i = t+ j) as

bt =
∞∑
j=0

(
1

1 + r

)j

yt+j −
1 + r

r
c̄

Therefore, debt is equal to the present discounted value of all future income minus the present
discounted value of all future consumption.

This expression for debt bt is obviously less than or equal to the natural debt limit b̄t for all t ≥
0, given in (4) because c̄ is strictly positive. Therefore, the natural debt limit never binds under
the optimal consumption path. This is intuitive: the household would never find it optimal to
choose a path for consumption which entails zero consumption for the rest of time starting at
some period t.

Note that the natural debt limits allow bt to be positive, but not too large. The agent takes on
debt if the agent’s income is growing, as the agent would like to borrow against future income
in order to consume. That is, the agent optimally decides to shift future consumption to the
present.

2.2 Ad hoc no borrowing constraint

We now go back to the original case in which the agent faces the much more severe ad hoc no
borrowing constraint. We continue to assume that the endowment sequence is known so that
there is no uncertainty, but now we impose the following constraint

bt+1 ≤ 0, ∀t

This implies that the houeshold can save but not borrow. Let us now work with the asset notation
as we described above, where

at+1 = −bt+1 + yt+1

That is, at+1 are the assets the agents has at the beginning of time t+ 1 that includes the current
realization of income. If the agent cannot enter the next period with debt, this just means that
the borrowing constraint becomes

ct ≤ at

Then agent can only consume up to his asset holdings (which includes today’s income).
Let (c∗t , a

∗
t ) denote an optimal path of the agent. The household’s problem is to maximize

utility over consumption given the sequence of budget constraints

at+1 = (1 + r)(at − ct) + yt+1 (7)

and the no-borrowing constraint ct ≤ at. Let λt be the Lagrange multiplier on the no-borrowing
constraint. The agent’s first-order necessary conditions are

u′(ct) = β(1 + r)u′(ct+1) + λt
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where λt is strictly positive if and only if the borrowing constraint is binding. Therefore, using
the fact that β (1 + r) = 1 we get that:

u′(c∗t ) ≥ u′(c∗t+1)

This holds with equality if the borrowing constraint is not binding (λt = 0). Therefore, along an
optimal path:

c∗t = c∗t+1, when c∗t < a∗t

and
c∗t < c∗t+1, when c∗t = a∗t .

This states that the no-borrowing constraint binds only when the household desires to shift con-
sumption from the future to the present. The household will desire to do that only when its
income is growing. Furthermore, according to these conditions, ct can never exceed ct+1.

Solving the budget constraint (7) forward for at and rearranging gives us

∞∑
j=0

(
1

1 + r

)j

ct+j = at +
∞∑
j=1

(
1

1 + r

)j

yt+j (8)

This holds for all dates t ≥ 1 in which the consumer arrives with a strictly positive net asset
position at > yt. If instead the borrowing constraint was binding at time t − 1, we have that
at = yt, and:

∞∑
j=0

(
1

1 + r

)j

ct+j =
∞∑
j=0

(
1

1 + r

)j

yt+j (9)

This implies that if the no-borrowing constraint is binding only finitely often, then after the
last date at which the constraint was binding, (9) and the Euler equation together imply that
consumption will thereafter be constant at the level c̄′ that satisfies

c̄′ =
r

1 + r

∞∑
j=0

(
1

1 + r

)j

yt+j

This is similar to the consumption in the natural borrowing constraint economy, except this
holds after the last date in which the constraint is binding. That is, suppose that an household
arrives in period t with zero savings but knows that the borrowing constraint will never bind
again. The household would then find it optimal to choose the highest sustainable constant
consumption. This is again given by the annuity value of the tail end of the income process
starting from period t. That is:

c̄′ =
r

1 + r
xt

where

xt ≡
∞∑
j=0

(
1

1 + r

)j

yt+j
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is the present discounted value in period t of the tail end of the income process.
Thus, the impact of the borrowing constraint will not vanish until the date at which the an-

nuity value of the tail of the income process is maximized. (Because the borrowing constraint
only binds when the household wants to move consumption in the future to today.) We state
this in the following proposition.

Proposition 1. Given a borrowing constraint and a nonstochastic endowment stream, the limit
of the nondecreasing optimal consumption path is

c̄ ≡ lim
t→∞

c∗t =
r

1 + r
x̄

where
x̄ ≡ sup

t
xt

Proof. See proof in Chapter 16 of Ljungqvist and Sargent (2004).

More generally, we know that at each date t for which the no-borrowing constraint is binding
at date t − 1, consumption will increase to satisfy (9). The time series of consumption will thus
be a discrete time step function whose jump dates t̄ coincide with the dates in which xt attains
new highs:

t̄ = {t|xt > xs, for all s < t}

Thus if there is a finite last date t̄, optimal consumption is a monotone bounded sequence that
converges to a finite limit.

3 The Permanent Income Hypothesis (PIH) with Quadratic Prefer-
ences

We now go back to allowing for uncertainty in the income process. We allow {yt}∞t=0 to be an
arbitrary stationary stochastic process.

We consider the special case in which utility is quadratic:

u(c) = −1

2
(ct − γ)2

where γ > 0 is called the bliss consumption level. This is useful because then marginal utility is
linear in consumption

u′(c) = γ − c

Furthermore, we put no bounds on c in this case: consumption is allowed to be negative. Finally,
we impose that

E0 lim
t→∞

(
1

1 + r

)t

b2t = 0

This constrains the asymptotic rate at which debt can grow.
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The household’s FOC is given by

u′(c) = β(1 + r)Etu
′(ct+1)

Next using the fact that β(1 + r) = 1, we get:

u′(c) = Etu
′(ct+1)

or,
γ − ct = Et (γ − ct+1)

Therefore under linear marginal utility we get that

Etct+1 = ct

Therefore ct follows a random walk!
Iterating the agent’s budget constraint forward, we get that

bt =
∞∑
j=0

(
1

1 + r

)j

(yt+j − ct+j) (10)

Taking expectations of both sides, we have:

Etbt = Et

∞∑
j=0

(
1

1 + r

)j

(yt+j − ct+j) ,

and note that bt = Etbt. Combining the optimality condition Etct+1 = ct with the household’s
budget constraint, we get that

bt = Et

∞∑
j=0

(
1

1 + r

)j

(yt+j − ct+j) = Et

∞∑
j=0

(
1

1 + r

)j

yt+j −
∞∑
j=0

(
1

1 + r

)j

Etct+j

= Et

∞∑
j=0

(
1

1 + r

)j

yt+j −
∞∑
j=0

(
1

1 + r

)j

ct

= Et

∞∑
j=0

(
1

1 + r

)j

yt+j −
1 + r

r
ct

Solving this for ct, we obtain:

ct =
r

1 + r

−bt + Et

∞∑
j=0

(
1

1 + r

)j

yt+j

 (11)
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This is what is called the Permanent Income Hypothesis (Friedman, 1957). Let

xt = Et

 ∞∑
j=0

(
1

1 + r

)j

yt+j

− bt

denote the agent’s expected permanent income as of time t. Then equation (11) tells us that the
household sets its current consumption equal to the annuity value of its expected permanent
income.

ct =
r

1 + r
xt

We say that the household’s marginal propensity to consume from permanent income is r/(1 +
r).

This consumption rule has the feature of certainty equivalence. That is, consumption ct de-
pends only on the first moment of the discounted value of the endowment sequence; consump-
tion does not depend on any higher orders (like variance for example).

4 Estimation and Tests of the PIH

Next we ask: can we test this model? There are two main tests (generally done on aggregate data,
but also people have looked it in micro data).

Random Walk Hypothesis and Unpredictability of Innovations in Consumption. Let’s first
look at innovations to consumption. Let

∆ct ≡ ct − ct−1

denote the innovation in consumption between time t and t− 1.
The fact that consumption follows a random walk implies that innovations to consumption

are unpredictable at time t− 1

Et−1[∆ct] = 0

Thus, the first main test is this random walk result, the unpredictability of consumption innova-
tions.

We can say more about these innovations. Let us rewrite the sequence budget constraint (1)
as follows

bt = −(1 + r)(yt−1 − ct−1 − bt−1)

Substituting this into our expression for optimal consumption (11) we get

ct = r(yt−1 − ct−1 − bt−1) +
r

1 + r
Et

 ∞∑
j=0

(
1

1 + r

)j

yt+j

 (12)

Next, lagging the optimal consumption function (11) by one period and multiplying through by
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(1 + r) gives us

(1 + r)ct−1 = r

−bt−1 + yt−1 +
1

1 + r
Et−1

 ∞∑
j=0

(
1

1 + r

)j

yt+j

 (13)

Subtracting (13) from (12) gives us

ct − ct−1 =
r

1 + r
Et

 ∞∑
j=0

(
1

1 + r

)j

yt+j

− r

1 + r
Et−1

 ∞∑
j=0

(
1

1 + r

)j

yt+j


Therefore the innovations to consumption satisfy

∆ct =
r

1 + r

∞∑
j=0

(
1

1 + r

)j

[Etyt+j − Et−1yt+j ] (14)

That is, the change in consumption from t − 1 to t, which is unpredictable at time t − 1, is
related to “news” about income and future income. New information at time t will generally
cause the consumer to revise previously held expectations about current and future income, so
that the discounted present value of these expectations will itself change. Thus, innovations in
consumption come from revisions in expectations of permanent income.

The unpredictability of aggregate consumption growth was first tested in a seminal paper by
Hall (1978). This model states that variables lagged t − 1 or earlier, in particular lags of income,
should not help predict the change in consumption in period t. Hall found that lagged income
terms were not significant in this regression. That is, he found orthogonality of lagged income
to consumption changes, confirming the predictions of the permanent income hypothesis. He
did however reject the model based on the finding that lagged stock-market values predicted
consumption change.

Forming expectations about income. Suppose that we accept that changes in aggregate con-
sumption cannot be predicted by lags of income. However, we can say more. According to (14),
changes in consumption come from innovations in expectations about future labor income.
Thus, if we know something about the underlying stochastic income generating process, we
ought to be able to check this prediction too.

Suppose we assume {yt}∞t=0 is an MA(2) process.

yt = εt + λεt−1

where εt is an i.i.d. white noise process, typically assumed to be Gaussian: εt ∼ N(0, 1). Thus,
good news now not only revises current period’s income upward, but also revises expectations
of next period’s income upward (when λ > 0, and downward when λ < 0). In this case, revisions
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to expected income look like

Etyt+j − Et−1yt+j =


εt if j = 0

λεt if j = 1

0 if j > 1

Substituting this into (14) we get

∆ct =
r

1 + r

(
[Etyt − Et−1yt] +

(
1

1 + r

)
[Etyt+1 − Et−1yt+1]

)
=

r

1 + r

(
1 +

λ

1 + r

)
εt

From this example it is straight-forward to see what happens for any moving average represen-
tation:

yt = εt +

∞∑
j=1

λjεt−j = εt + λ1εt−1 + λ2εt−2 + · · ·

Then the warranted revision to consumption is

∆ct =
r

1 + r

(
1 +

λ1

1 + r
+

λ2

(1 + r)2
+ · · ·

)
εt

This gives us a simple rule for evaluating consumption changes from the moving average repre-
sentation of a time-series: simply discount the moving average terms, and add.

Suppose instead that {yt}∞t=0 is follows an AR(1) process:

yt = ρyt−1 + εt

with ρ ∈ (−1, 1). Substituting this into (14) we get

∆ct =
r

1 + r

∞∑
j=0

(
1

1 + r

)j

[Etyt+j − Et−1yt+j ]

=
r

1 + r

∞∑
j=0

(
1

1 + r

)j

ρjεt

=
r

1 + r

(
1

1− 1
1+rρ

)
εt =

r

1 + r

(
1 + r

1 + r − ρ

)
εt

=
r

1 + r − ρ
εt

Therefore a unit innovation in income causes permanent income to change by:

r

1 + r − ρ
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which is monotonically increasing in ρ. In fact, this approaches 1 as ρ approaches 1. This limit
case is the case in which income itself follows a random walk. Then the best predictor of fu-
ture income is current income, and innovations are expected to persist forever. In this case any
innovation to income is permanent, and has a 1-for-1 effect on consumption.

These examples show how innovations in income translate into changes in permanent in-
come, and thus into changes in consumption. The important point to take from these examples
is that the effect of innovations in income on permanent income will be larger the more per-
sistent the income process. Hence, the marginal propensity to consume from an innovation to
current income depends crucially on the persistence of the income process. Temporary, or tran-
sitory, changes in income should produce only small effects on current consumption, whereas
permanent or very persistent changes in income should result in large effects on current con-
sumption.

How would one test this? Flavin (1981) tested equation (14), together with an autoregressive
specification for the process governing income. She found that consumption responded to pre-
dictable changes in income—this is called “excess sensitivity,” and hence violates the Permanent
Income model.

Furthermore, Deaton (1987) showed that in the data the marginal propensity to consume
out of very persistent income innovations appeared to be too small (given the persistence of the
income process). We call this violation “excess smoothness.” In the data it looks like aggregate
consumption is too smooth relative to persistent changes in aggregate income.

Finally, in terms of studies on micro data as opposed to macro data, there are seminal papers
by Hall and Mishkin (1982) and Zeldes (1989). See Attanasio and Weber (2010) for a fantastic
survey of this literature, both theory and empirics.

5 Precautionary Savings: A Simple Two-Period Model

Let’s now move away from the special case of quadratic utility.
We will now try to understand the household’s optimal consumption and savings problem

with an uncertain income stream, but now with more general utility functions. With more gen-
eral utility functions we will break the certainty equivalence result that we get with quadratic
utility.

To build intuition, let us first consider a very simple two-period savings problem

maxu(c0) + βE(c1)

where

c0 + a = x

c1 = (1 + r)a+ y1

with u′ > 0, u′′ < 0 and where endowment x is given by income y1 is uncertain at time 0. Taking
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FOCs, the Euler equation is obviously given by

u′(c0) = β(1 + r)Eu′(c1)

or
u′(x0 − a) = β(1 + r)Eu′((1 + r)a+ y1)

This along with the budget constraint would pin down the optimal choice of a∗ for the agent. We
can represent the optimal asset level graphically in Figure 1.

Figure 1. Optimal asset determination in the 2-period model

Now consider a mean-preserving spread ε to time 1 income. That is, replace y1 with ỹ1 where

ỹ1 = y1 + ε, with Eε = 0

so that we keep the mean income constant but we just increase the variance (second moment).
There are three possibilities for what happens to the household’s optimal asset level a:

1. if the function u′ is linear, then a∗ stays constant.

2. if u′ is convex, then RHS of Euler equation rises and as a result a∗ increases.

3. if u′ is concave, then RHS of Euler equation falls and as a result a∗ decreases.

These follow from Jensen’s inequality. To see this, Figure 3 demonstrates Jensen’s inequality for
a convex marginal utility function u′.

From this we see that it is the third derivative of the utility function, u′′′, that matters for
precautionary savings! While this is not the most intuitive utility feature to understand, some
people call this derivative “prudence.”

By introspection, people seem to increase their precautionary savings when variance of in-
come goes up. So it seems natural that u′′′ > 0. Furthermore, note that for CRRA: u′(c) = c−γ

with γ > 0, thus u′ is convex.
For quadratic utility, marginal utility is linear. That’s why in our analysis above of the per-

manent income hypothesis only the mean of the income process matters (not variance nor any
other higher order moments).
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Figure 2. Jensen’s Inequality with convex u′

Figure 3. Optimal asset determination in the 2-period model with mean preserving spread

Finally, note that even if we consider a utility function that features a marginal utility that is
not convex globally, it must ultimately be convex at the limits. Because if u′(c) > 0, u′′(c) < 0 and
c ≥ 0, it must be the case that u′(c) is strictly convex near the limits of c → 0 and c → ∞. Thus,
convex marginal utility is somewhat unavoidable at least in the limits.
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