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We continue with our exploration of an incomplete markets model in which the household
has a precautionary savings motive to self-insure against idiosyncratic income risk. This lecture
builds on material found in Chapters 16 and 17 of Ljungqvist and Sargent (2004).

1 The Individual Household’s Problem

We continue to maintain the assumption that β(1 + r) = 1. Recall that the household faces a
stochastic endowment process{yt}∞t=0 in which in each period, the endowment takes one of a
finite number of values, indexed by s ∈ S:

y ∈ Y = {ȳ1, ȳ2, . . . ȳS}

where without loss of generality we assume

ȳ1 < ȳ2 < . . . < ȳS .

We assume that the sequence of endowments are i.i.d. over time and drawn from the following
distribution

Pr(yt = ȳs) = πs

with
∑

πs = 1.
We let at denote the assets of the consumer at the beginning of in period t including the cur-

rent realization of the income process. Then the household’s Bellman equation can be written
as:

V (a) = max
c∈[0,a]

{
u(c) + β

∑
s∈S

πsV ((1 + r)(a− c) + ȳs)

}
recall that c ≤ a is the borrowing constraint. Recall that the value function V (a) inherits the
basic properties of u(c); that is, it is increasing, strictly concave, and differentiable.

Household optimization. The FOC for the household’s problem is given by:

u′(c) = β(1 + r)
∑
s∈S

πsV
′((1 + r)(a− c) + ȳs) + λ,
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where λ is the Lagrange multiplier on the borrowing constraint: λ is strictly positive if the bor-
rowing constraint is binding, or equal to zero if it is non-binding.

We may thus rewrite the Euler equation as follows

u′(c) ≥ β(1 + r)
∑
s∈S

πsV
′((1 + r)(a− c) + ȳs)

with equality if the no-borrowing constraint is not biding. Benveniste-Scheinkman gives us:

u′(c) = V ′(a)

so that the Euler equation can be written as

V ′(a) ≥
∑
s∈S

β(1 + r)πsV
′(a′s)

where a′s is next period’s assets if the income shock is ȳs:

a′s = (1 + r)(a− c) + ȳs

Imposing that β(1 + r) = 1, we have that {V ′(a)} is a nonnegative supermartingale:

E[V ′(a′)] ≤ V ′(a)

The expected value of V ′(a′) is weakly less than its value today. [If instead E[V ′(a′)] ≥ V ′(a), we
would say that {V ′(a)} is a submartingale.]

We then use the following theorem from Doob (1953).

Theorem 1. The Supermartingale Convergence Theorem (Doob, 1953). Let {Zt} be a nonnegative
supermartingale. Then there exists a random variable Z such that

lim
t→∞

Zt = Z

almost surely and E[Z] < ∞ i.e. Zt converges almost surely to a finite limit.

Proof. Omitted.

In other words, if Zt is a nonnegative supermartingale, it converges almost surely to a finite
limit. Applying this to our problem, we reach the following result.

Proposition 1. {V ′(a)} converges almost surely to a finite limit. The limit value of V ′(a) is zero,
and hence in the limit assets diverge to infinity.

Proof. First, {V ′(a)} converges almost surely to a finite limit by the supermartingale conver-
gence theorem. Next, the limit value of V ′(a) must be zero because of the following argument.

Suppose that instead V ′(a) converges to a strictly positive limit:

lim
t→∞

V ′(a) > 0
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Let a∗ be the associated optimal path for asset accumulation. Then

lim
t→∞

a∗t = ā

where
0 < ā < ∞

Therefore at converges to a finite positive value. Let c = g(a) be the optimal policy function for
c. Then from the budget constraint we have

at+1 = (1 + r)(ā− g(ā)) + yt+1

but yt+1 is random. Therefore, at+1 is not necessarily equal to ā. This is a contradiction, and
hence V ′(a) cannot converge to a strcitly positive limit. Instead V ′(a) must converge to zero,
implying that assets diverge to infinity.

Note that assets do not necessarily increase monotonically. Low income realizations will
reduce asset holdings. But over time, assets will grow to infinity. The fact that assets converge to
infinity means that the individuals’ consumption also converges to infinity.

To see this, note that from the Beneviste-Scheinkman formula we again have that:

u′(c) ≥
∑
s∈S

β(1 + r)πsu
′(c′).

Imposing that β(1 + r) = 1, we have that {u′(c)} is a nonnegative supermartingale:

E[u′(c′)] ≤ u′(c)

The expected value of u′(c) is weakly less than its value today. Again by the supermartingale
convergence theorem, {u′(c)} converges almost surely to a finite limit.

Proposition 2. {u′(c)} converges almost surely to a finite limit. The limit value of u′(c) is zero, and
hence in the limit consumption diverges to infinity.

Proof. Again suppose that u′(c) converges to a strictly positive limit:

lim
t→∞

u′(c) > 0

Let c∗ be the associated optimal path of consumption. Then

lim
t→∞

c∗t = c̄ ∈ (0,∞)

c̄ would have to be the maximum constant consumption level sustainable for all possible future
realizations of income.

But this would imply that c̄ is the annuity value of current assets and a stream of future in-
comes all equal to the lowest possible realization, i.e. yt+k = ȳ1 for all k > 0. (why? due to the
constraint that consumption cannot go negative).
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However note that whenever yt+k ends up being higher than the lowest possible realization,
ȳ1, the agent’s wealth (i.e. current assets a) increases, implying that c̄ will clearly not be the op-
timal consumption level anymore: the optimal level of ocnsumption would increase. It follows
that consumption will vary with income realizations. But this is a contradiction: consumption
cannot converge to a finite limit.

Therefore, it cannot be the case that consumption converges to a finite limit. u′(c) must
converge to zero, and consumption must diverge to infinity.

1.1 Summary: Certainty vs. Uncertainty

Recall that under certainty, the optimal consumption path converges to a finite limit as long as
the discounted value of all future income is bounded across t.

lim
t→∞

c∗t = c̄ ∈ (0,∞)

where
c̄ =

r

1 + r
sup
t

xt

where

xt ≡
∞∑
j=t

(
1

1 + r

)t−j

yj

denotes permanent income. That is, under certainty the limiting value of the consumption path
is given by the highest annuity value of the endowment process across all starting dates t.

In stark contrast, under uncertainty (a stochastic endowment process), we find that the op-
timal consumption path diverges to infinity!

{c∗t } → ∞

Assets also diverge to infinity. The stark difference between the two cases is remarkable!

Intuition. What is the intuition for this? Again the intuition for these results is not incredi-
bly obvious. However it stems from what we discussed in the last class in the simple two pe-
riod model. Due to the precautionary savings motive, agents save so much that both assets and
consumption diverge to infinity. The optimality of unbounded consumption growth applies to
utility functions whose marginal utility of consumption is strictly convex. However, even utility
functions that do not have convex marginal utility globally must ultimately conform to a similar
condition over long intervals in the limits (as we discussed in the previous class). See section
16.7 in Ljungqvist and Sargent (2004) for a discussion.

Note that throughout all of this analysis we have maintained the assumption that the interest
rate is equal to the discount rate. Consider the Euler equation under certainty:

u′(ct) = β(1 + r)u′(ct+1)
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With β(1 + r) = 1 you get that u′(ct) = u′(ct+1) and hence ct = ct+1. However, once you add
uncertainty and a borrowing constraint (tighter than the natural borrowing constraint), agents
have a greater demand for assets due to the precautionary savings motive—they want to self-
insure against bad shocks. Thus, agents demand a greater amount of assets, and if the interest
rate does not fall in equilibrium to counteract this increase in demand, assets continue to rise
and (almost surely) diverge to infinity.

2 The Interest Rate

Consider the Euler Equation

u′(ct) ≥ β(1 + r)u′(ct+1)

and let mt denote:
mt ≡ βt(1 + r)tu′(ct)

Then Euler Equation can be written as:

Etmt+1 ≤ mt

Therefore mt is a non-negative supermartingale. If we apply the supermartingale converge the-
orem,

mt →a.s. m̄

Next, consider two cases: β(1 + r) ≥ 1 and β(1 + r) < 1.

Suppose β(1 + r) ≥ 1. By the supermartingale converge theorem,

V ′(at) →a.s 0 and u′(ct) →a.s 0

which implies assets and consumption diverge to infinity:

at →a.s ∞ and ct →a.s ∞.

Suppose instead β(1 + r) < 1. Then in this case u′(ct) can remain strictly positive and vary
randomly while

βt(1 + r)t →a.s. 0.

In this case, the average level of assets and consumption need not diverge to infinity and can
remain finite (but vary randomly).
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3 Heterogeneous Agent Models

We will now consider a continuum of agents in the economy facing the savings problem we have
considered above. These agents all face idiosyncratic income risk, but there are no insurance
markets for them to share this risk. They can only borrow and save in a safe asset but face a
borrowing constraint. Hence, we call this a form of incomplete markets. Furthermore, we will
now treat the interest rate 1 + r as an equilibrium object. This class of models with many agents
and incomplete markets was first introduced by Bewley (1977, 1980).

We often refer to this class of models as Bewley-Imrohoroglu-Huggett-Aiyagari Models.
Within this class we will consider a particularly important and often used model of a produc-
tion economy in which agents face uninsurable idiosyncratic income risk but may borrow and
save in capital. This model was introduced by Aiyagari (1994).

3.1 The Aiyagari (1994) Model

Suppose the household’s labor at time t, state st, evolves according to an m-state Markov chain
with transition matrix π(s′|s). That is, st ∈ S = {s1, s2, . . . , sm} where S is the vector of the
m employment states. Think of these as the household’s labor endowment. Without loss of
generality

s1 < s2 < . . . < sm

If the realization of the process at time t is st, then at time t the household receives labor income
wst. Thus employment opportunities determine the labor income process.

The household’s problem is given by

maxE
∞∑
t=0

βtu(ct)

subject to
ct + xt = r̃kt + wst

and
kt+1 = (1− δ)kt + xt

and a borrowing constraint which we will consider shortly. Let r̃ be the rental rate on capital and
w is a competitive wage rate, to be determined in equilibrium, but the household takes these as
given. We may combine these two equations to get

ct + kt+1 = (1 + r̃ − δ)kt + wst

Thus we may rewrite this as
ct + kt+1 = (1 + r)kt + wst

where r = r̃ − δ.
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Digression: the general savings problem. For a moment let us use an assets notation, so that

ct + at+1 = (1 + r)at + wst

This is the same as our model above, but with at = kt. We may thus write the Bellman equation
for the household as

V (a, s) = max
a′

u(c) + β
∑

π(s′|s)V (a′, s′)

subject to
c+ a′ = (1 + r)a+ ws.

and a borrowing constraint
a′ ≥ −ϕ

where ϕ ≥ 0 is more restrictive than the natural borrowing constraint.
The natural borrowing constraint. Suppose the household were not to consume for all peri-

ods going forward. Then iterating the budget constraint forward and imposing ct+j ≥ 0 for all j,
we obtain the natural borrowing constriant,

at = −
∞∑
j=0

(
1

1 + r

)j+1

wst+j

Finally, using the fact that min st+j = s1, we have

at = −ws1
r

Ad hoc borrowing constraint. To impose a more restrictive borrowing constraint, we set

a′ ≥ −ϕ

where ϕ satisfies
ϕ <

ws1
r

,

i.e. it is tighter than the natural borrowing constraint.

3.2 Equilibrium in the Aiyagari Model

The Individual household’s problem. We constrain the holdings of the asset into a grid:

A ≡ {−ϕ, a1, a2, . . . an}

The household’s Bellman equation can then be written as follows:

V (a, s) = max
a′∈A

u((1 + r)a+ ws− a′) + β
∑

π(s′|s)V (a′, s′). (1)

Note that the state is now two-dimensional (a, s) because s is not i.i.d.
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From this problem we can solve for the value function V (a, s) that satisfies this equation as
well as an associated policy function for asset holdings

a′ = g(a, s).

Thus, g maps the period’s two-dimensional state (a, s) into an optimal choice of assets a′ to carry
into the next period.

Wealth-employment distributions. All households in this economy at time t will have some
state vector (at, st). Define the unconditional distribution of (at, st) pairs as

λt(a, s) = Pr(at = a, st = s)

The exogenous Markov chain π(s′|s) and the optimal policy function a′ = g(a, s) together induce
a law of motion for the distribution λt given by

λt+1(a
′, s′) = Pr(at+1 = a′, st+1 = s′)

=
∑
at

∑
st

Pr(at+1 = a′|at, st) Pr(st+1 = s′|st)λt(at, st)

=
∑
a

∑
s

I(a′|a, s)π(s′|s)λt(a, s)

where

I(a′|a, s) =

{
1 if a′ = g(a, s)

0 if a′ ̸= g(a, s)

We can also express this as

λt+1(a
′, s′) =

∑
s∈S

∑
{a∈A:a′=g(a,s)}

π(s′|s)λt(a, s)

A time-invariant distribution λ that solves this equation, i.e. λt+1 = λt = λ for all t, is called a
stationary distribution.

Similarly, let ξ be the invariant distribution associated with the Markov chain π(s′|s). That is

ξt+1(s) =
∑
s

π(s′|s)ξt(s)

Thus, ξ is the time-invariant distribution that solves this equation, i.e. ξt+1 = ξt = ξ for all t.

Aggregate Capital and Labor We assume that there is an initial distribution fo assets across
households of λ(a, s) where λ is the stationary distribution. Suppose the household’s optimal
policy function is a′ = g(a, s) for given interest rate r. Then the aggregate level of savings in the
economy satisfies

A(r) =
∑
a∈A

∑
s∈S

λ(a, s)g(a, s)
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Furthermore, assuming we start from the invariant distribution ξ over employment states, we
have that the aggregate level of employment is

L = ξ′S.

where recall that S = {s1, s2, . . . , sm} is the vector of the m employment states.
Finally, we assume there is a competitive representative firm with production function

F (K,L) = KαL1−α

with α ∈ (0, 1). From the firm’s FOCs, we have that the wage rate and rental rate, respectively,
satisfy:

w =
∂F (K,L)

∂L
and r̃ =

∂F (K,L)

∂K

Recall that r = r̃ − δ.

Figure 1. Equilibrium in Aiyagari (1994)

We reach the following definition of a stationary competitive equilibrium.

Definition 1. A stationary equilibrium is a policy function a′ = g(a, s), a probability distribution
λ(a, s), and aggregate capital, interest rate, and wage (K, r,w) such that

(i) the prices (r, w) satisfy

w =
∂F (K,L)

∂L
and r =

∂F (K,L)

∂K
− δ

(ii) the policy function g(a, s) solves the household’s problem in 1 for given interest rate r;
(iii) the probability distribution λ(a, s) is the stationary distribution associated with

(g(a, s), π);
(iv) the capital market clears (capital demand is equal to the supply of capital):

K = A(r)
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where
A(r) =

∑
a∈A

∑
s∈S

λ(a, s)g(a, s)

The equilibrium is illustrated in the left panel of Figure 1.
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A Appendix

What is a martingale?

Definition 2. Suppose {Ft} is a filtration on some probability space (Ω,F , P ) where Ω is a sam-
ple space (the set of all possible outcomes), F is a set of events, and P is a probability measure
(a function which maps these events into probabilities). Then, suppose that the sequence {Zt}
satisfies the following properties:
(i) Zt is measurable with respect to Ft.
(ii) E|Zt| < ∞
(iii) E(Zt+1|Ft) = Zt

Then {Zt} is said to be a martingale with respect to the filtrationFt. If insteadE(Zt+1|Ft) ≥ Zt

we say that {Zt} is a submartingale. If instead E(Zt+1|Ft) ≤ Zt we say that {Zt} is a supermartin-
gale.
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