Business Cycle Facts

Jennifer La'O

Macroeconomic Analysis I

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

Introduction to Business Cycles

• We start by identifying some key business cycle facts

• Throughout, we will focus on the US and in the post-WWII/pre-financial crisis era.

• Not very different if you look at the typical OECD country

• Stock and Watson (1998), "Business Cycle Fluctuations in U.S. Macroeconomic Series"

• King and Rebelo (2000), "Resuscitating Real Business Cycles"

Questions

- How do we define and measure the business cycle?
- What kind of regularities do we see in the data?
- How do real quantities move over the business cycle?
 real quantities: aggregate output, consumption, investment, employment, etc.
- How do nominal variables move over the business cycle?
 nominal variables: nominal price index, nominal wages, and nominal interest rates

Real Output

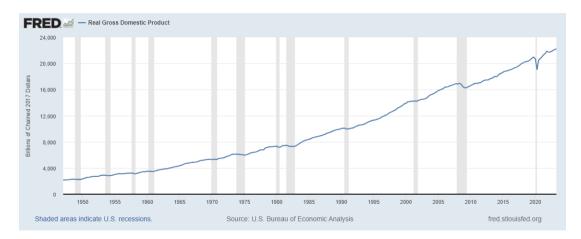
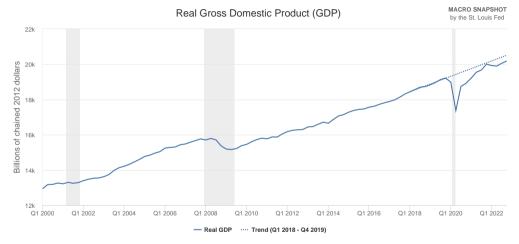



Figure: Time Series of Real GDP in the US

Real Output Since 2000

Seasonally adjusted annual rate. Recessions are shaded. Source: Bureau of Economic Analysis. Powered by FRED.

Figure: Time Series of Real GDP in the US

Unemployment

Figure: Time Series of Unemployment in the US

Inflation

Consumer Price Index (CPI) Inflation

MACRO SNAPSHOT by the St. Louis Fed

Seasonally adjusted. Recessions are shaded. Source: Bureau of Labor Statistics. Powered by FRED.

Figure: Time Series of Inflation in the US

What are Business Cycles?

- Clearly, output has grown on average, but it has also exhibited fluctuations around its trend
- In the data, business cycles are loosely defined as:
 - ▶ short run fluctuations of macro variables around a smoother long-run (growth) trend

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの

- What macroeconomic variables are we interested in?
- And how can we separate the cycle from the trend?

We focus on real quantities

• The business cycle framework that we study next is concerned exclusively with real quantities

• We postpone a discussion of nominal variables (inflation, interest rates) for later in the first-year macro sequence

Key Macroeconomic Variables of Interest

- GDP and its components: Y = C + I + G
 - think of a closed economy (for simplicity)
- Consumption (*C*):
 - Nondurables + Services
 - Durables
- Investment (1):
 - Investment in capital
 - Changes in inventories
- $\bullet~\mbox{Labor:}$ total hours worked = employment \times hours per worker

- Relative prices:
 - real wage
 - real Interest rate

Separating the Cycle from the Trend

• We need a "filter" that will remove the trend and give us the cycle

- Some commonly used filters:
 - Linear trend
 - ► HP (Hodrick-Prescott) filter
 - Bandpass filter

The Cycle vs. the Trend

• let y_t be the log of actual GDP (or any other variable of interest)

$$y_t = \log GDP$$

• we decompose log GDP in the following way:

$$y_t = \hat{y}_t + \tilde{y}_t$$

- where \hat{y}_t is the trend (or growth) component
- and \tilde{y}_t is the cyclical (or detrended) component

$$\tilde{y}_t \equiv y_t - \hat{y}_t$$

The Cycle vs. the Trend

$$y_t = \hat{y}_t + \tilde{y}_t$$

- we'd like to measure \tilde{y}_t , the log deviation from trend
 - expansions/recessions: output above/below trend
- but how do you define \tilde{y}_t vs. \hat{y}_t ?
 - multiple plausible answers

Linear Trend

- simplest answer: assume a linear trend
- let g be the average growth rate

$$\hat{y}_t \equiv gt$$

• equivalently, \tilde{y}_t is the residual from regressing y_t on time t.

Linear Trend at work: US GDP

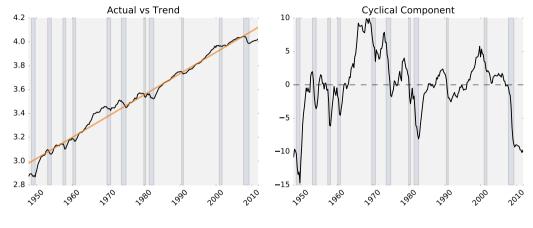


Figure: GDP

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = の < @

- conceptually simple
- but not that useful if low-frequency movements are not a deterministic linear trend

- e.g. productivity slowdown, changes in demographics
- needed: filter that eliminates medium- to low-frequency variation

The Hodrick-Prescott (HP) Filter

• HP filter: \hat{y}_t is defined by minimizing the following loss function:

$$L = \sum_{t} (\hat{y}_{t} - y_{t})^{2} + \lambda \sum_{t} [(\hat{y}_{t+1} - \hat{y}_{t}) - (\hat{y}_{t} - \hat{y}_{t-1})]^{2}.$$

- $\bullet\,$ parameter $\lambda>0$ governs how much we punish variations in the growth component
- \hat{y}_t converges to a linear trend when $\lambda o \infty$ and to the actual data as $\lambda o 0$
- the standard practice is to set $\lambda=1600$ (for quarterly data).

HP Filter at work: US GDP

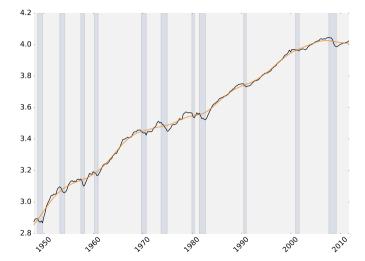


Figure: black line: actual GDP data, red line: trend (smooth but not linear)

HP Filter at work: US GDP

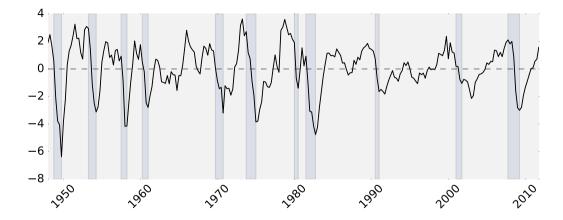


Figure: cyclical component of GDP (using HP filter)

- Bandpass filter: a bit more sophisticated, but also more kosher
- isolates the sources of variation that operate at particular frequencies. common practice to look at the BP filter that keeps frequencies between 6 and 32 quarters (8 years)
- like HP, this removes low-frequency movements.
- but in contrast to HP, the BP filter has the advantage that it also removes high-frequency "noise"

- it thus leaves us with only the interesting, regular business-cycle movements.
- [see Stock and Watson (1998) for further discussion]

In Practice

- common practice: use either HP or BP filter
- fortunately, both filters give very similar picture for most macro variables
- implies that business cycle facts are robust to different ways of inspecting the data
- the next figure illustrates the similarity of the cyclical components of GDP that we obtain if we apply either the HP or the BP filter.

HP vs BP

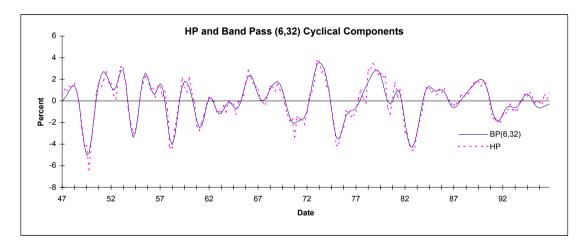


Figure: cyclical components of real output

• clearly, there isn't much difference in the case of output.

• note, however, that there could be more noticeable differences for other variables.

think, e.g., of stock prices.

• with the preceding points in mind, we use interchangeably the two filters.

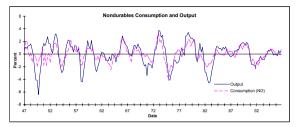
• We are now ready to explore the empirical regularities of business cycles

- For convenience, I report some figures from King and Rebello (2000)
 - ▶ they use the HP filter and concentrate on real quantities

• Similar figures can be found in Stock and Watson (1998), who use the BP filter.

Business Cycle Facts

- The following series of figures illustrate the cyclical components of various macroeconomic variables (in pink) against the cyclical component of GDP (in blue).
- Terminology:
 - procyclical = movements are positively correlated with movements in output
 - countercyclical = movements are negatively correlated with movements in output
 - acyclical = movements have zero correlation with movements in output
- These figures help guide the construction and evaluation of the theoretical business-cycle framework that we will study next


Consumption

• Consumption is procyclical (positively correlated with output)

• Spending on durables is more volatile than output

• Spending on non-durables is less volatile than output

Durable vs Non-Durables

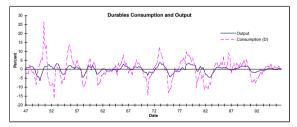


Figure: Consumption and Output

Investment is strongly procyclical and more volatile than output

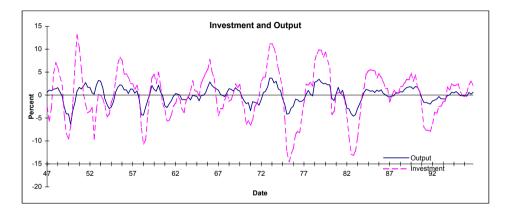


Figure: Investment and Output

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の < @

Labor (Total Hours) is procyclical and as volatile as output

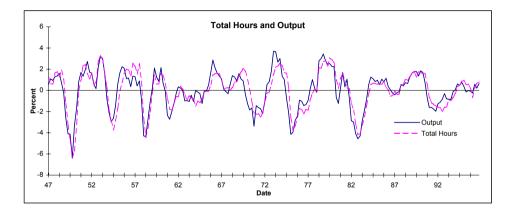


Figure: Total Hours and Output

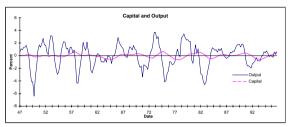
・ロト・西ト・西ト・日・ 白・

• Most of the labor-input fluctuations are in total employment (number of workers employed)

• rather than in hours per worker

Employment fluctuates more than hours per worker

Figure: Hours, Employment, and Output


Capital

• The capital stock moves very slowly

• But capital utilization is highly procyclical

• As a result, effective capital input is highly procyclical

Capital Utilization is highly procyclical

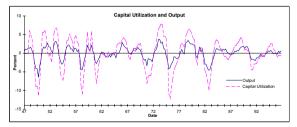


Figure: Capital and Output

Labor Productivity and Real Wages

• Define labor productivity as output per worker-hour

 $\frac{Y_t}{L_t}$

- Labor productivity is moderately procyclical
- But real wages are only mildly procyclical

Labor Productivity and Real Wages

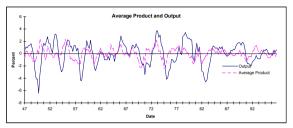


Figure: Labor productivity, real wages, and output

Productivity

- We would like a measure of "productivity"
- Suppose that output is produced using a Neoclassical Production Function

 $Y_t = A_t F(K_t, L_t).$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの

- We call A_t "Total Factor Productivity"
 - this is also sometimes called *Hicks-neutral* productivity
 - this is clearly an unobserved variable

The Solow Residual

- We would like a measure of Total Factor Productivity (TFP)
- Suppose that production is in particular Cobb-Douglas

$$Y_t = A_t K_t^{\alpha} L_t^{1-\alpha}$$

• TFP can be computed from data on output Y_t , capital K_t , and total hours L_t as follows:

$$\log A_t = SR_t \equiv \log Y_t - \alpha \log K_t - (1 - \alpha) \log L_t$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

where α is the income share of capital.

• We call this the Solow residual; it is simply a "residual"

The Solow Residual is strongly procyclical

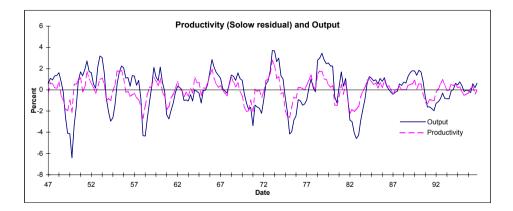


Figure: The Solow Residual and Output

・ロト・日本・日本・日本・日本・日本

- Although the previous figures are illuminating, eye-balling is not enough.
- To be more methodical, we look at the following moments:
 - standard deviations of variables of interest
 - contemporaneous correlations with output (or other cross-variable correlations)

Business Cycle Statistics for the US Economy

	Standard Deviation	Relative Standard Deviation	First Order Auto- correlation	Contemporaneous Correlation with Output
Υ	1.81	1.00	0.84	1.00
С	1.35	0.74	0.80	0.88
Ι	5.30	2.93	0.87	0.80
Ν	1.79	0.99	0.88	0.88
Y/N	1.02	0.56	0.74	0.55
w	0.68	0.38	0.66	0.12
r	0.30	0.16	0.60	-0.35
А	0.98	0.54	0.74	0.78

Figure: Table 1 of King and Rebelo, 2000

The Strong Comovement of Y, C, and I

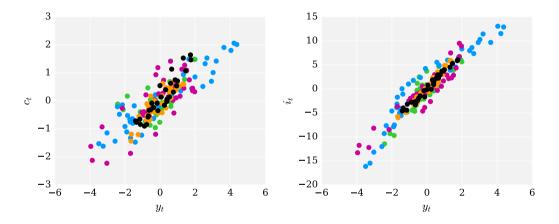


Figure: Scatterplots. Left: output and consumption. Right: output and investment.

・ロト・西ト・ヨト・ヨー シタク

• We have discussed how to measure and define the cyclical component of macroeconomic time series

• With this tool, we have established some key business cycle stylized facts

Business Cycle Facts

• Consumption, investment, and labor are all strongly procyclical

- durables are more procyclical than non-durable consumption
- employment fluctuates more than hours
- although capital moves slowly, capital utilization is highly procyclical

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- Labor productivity is moderately procyclical
- Real wages are only mildly procyclical
- The Solow residual (a proxy for TFP) is strongly pro-cyclical

• These empirical regularities are all I'm going to say about the data

• We will use these facts to help guide the construction and evaluation of the theoretical business-cycle framework that we study next