
The Contraction Mapping Theorem

Jennifer La’O*

In this lecture we state and prove the Contraction Mapping Theorem, also known as the Ba-
nach Fixed Point Theorem, a powerful fixed point theorem used often in economics. This theo-
rem is regularly applied in dynamic settings in macro, industrial organization, structural labor,
finance, and infinitely-repeated games. These lecture notes draw on material found in Chapter
3 of Stokey, Lucas and Prescott (1989) and Chapter C of Ok (2007).

1 What is a contraction?

We begin with the definition of a contraction.

Definition 1. Let (X, ρ) be a metric space and let T : X → X be a function mapping X into itself.
We say T is a contraction mapping with modulus β if for some β ∈ (0, 1) ⊂ R,

ρ(Tx, Ty) ≤ βρ(x, y), ∀x, y ∈ X.

Sometimes we call T a self-map: a function that maps from a set X back into X (the domain
and codomain are identical). I will often refer to T as an operator.

Familiar examples of a contraction mapping are those on a closed interval on the real line.
Let X = [a, b] ⊂ R with the Euclidean norm ρ(x, y) = ∥x − y∥ = |x − y|. Then T : X → X is a
contraction if for some β ∈ (0, 1),

|Tx− Ty| ≤ β|x− y|, ∀x, y ∈ X.

For all x ̸= y:
|Tx− Ty|
|x− y|

≤ β.

That is, T is a contraction if it is a function with slope uniformly less than one in absolute value.
Let’s consider an extremely simple example. Let X = [0, 1] ⊂ R, with the Euclidean norm,

ρ(x, y) = |x− y|. Consider the following operator T : X → X, defined by:

Tx = .2 + .6x, ∀x ∈ [0, 1]. (1)
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Then
|Tx− Ty| = .6|x− y|

Therefore
|Tx− Ty| ≤ β |x− y|

for all β ∈ [.6, 1). In this case we would say that T is a contraction mapping with modulus β, for
any β ∈ [.6, 1).

Next we would like to consider the fixed points of the contraction mapping T.

Definition 2. A fixed point of T is an element x ∈ X that satisfies:

Tx = x.

In my example above (1), a fixed point satisfies:

.2 + .6x = x,

Solving this for x, we get x = .5. Furthermore, if you graph this simple function, you can easily
see that this contraction has a unique fixed point.

2 The Contraction Mapping Theorem

Although the example above is super simple, the conclusion that the contraction has a unique
fixed point is much more general. First, we define the iterations of applying T by

T 0x = x, Tnx = T (Tn−1x), ∀n = 1, 2, . . .

We now state and prove the Contraction Mapping Theorem, also known as the Banach Fixed
Point Theorem.

Theorem 1. The Banach Fixed Point Theorem/The Contraction Mapping Theorem, general ver-
sion.

Let (X, ρ) be a complete metric space. If T : X → X is a contraction mapping with modulus β,
then:

(i) T has exactly one fixed point x ∈ X, and
(ii) for any x0 ∈ X

ρ(Tnx0, x) ≤ βnρ(x0, x), ∀n = 0, 1, 2, . . .

Proof. Part (i). To prove the first part, we must find an x ∈ X such that Tx = x and show that no
other element x′ ∈ X satisfies this criteria.

Choose an initial element x0 ∈ X and define the sequence {xn}∞n=0 by

xn = Tnx0

so that xn+1 = Txn, for all n = 0, 1, 2, . . ..
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The first step is to prove that the sequence we just defined is Cauchy. By the contraction
property of T ,

ρ(x2, x1) = ρ(Tx1, Tx0) ≤ βρ(x1, x0).

By induction, we get
ρ(xn+1, xn) ≤ βnρ(x1, x0), ∀n = 1, 2, . . .

Next, by the triangle inequality, for any m > n,

ρ(xm, xn) ≤ ρ(xm, xm−1) + · · ·+ ρ(xn+2, xn+1) + ρ(xn+1, xn)

Thus

ρ(xm, xn) ≤
[
βm−1 + · · ·+ βn+1 + βn

]
ρ(x1, x0) = βn

[
βm−n−1 + · · ·+ β + 1

]
ρ(x1, x0),

where
1 + β + β2 · · ·+ βm−n−1 <

1

1− β
.

Therefore

ρ(xm, xn) <
βn

1− β
ρ(x1, x0) (2)

It is clear from (2) that the sequence {xn}∞n=0 is Cauchy. Since (X, ρ) is a complete metric space,
it follows that the sequence converges to an x ∈ X.

xn → x ∈ X.

Next we show that this limit satisfies Tx = x. Note that for all n = 1, 2, . . . and any x0 ∈ X,the
distance between Tx and x satisfies

ρ(Tx, x) ≤ ρ(Tx, Tnx0) + ρ(Tnx0, x),

by the triangle inequality. Furthermore note that:

ρ(Tx, Tnx0) = ρ(Tx, T (Tn−1x0)) ≤ βρ(x, Tn−1x0)

Therefore
ρ(Tx, x) ≤ βρ(x, Tn−1x0) + ρ(Tnx0, x).

But we have just shown that both terms on the right-hand side converge to zero as n → ∞.
Hence ρ(Tx, x) = 0, or equivalently, Tx = x. Therefore the limit of this sequence is a fixed point
of T .

Next we must show that this fixed point is unique: that there is no other x′ ∈ X satisfying
Tx′ = x′. We can prove this by contradiction. Suppose there exists an x′ ∈ X satisfying Tx′ = x′

and x′ ̸= x. Then
0 < a = ρ(x′, x) = ρ(Tx′, Tx) ≤ βρ(x′, x) = βa
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But a = βa cannot hold for any a > 0 since β < 1. Therefore, the fixed point is unique.
Part (ii). Observe that first, for n = 0

ρ(T 0x0, x) = ρ(x0, x).

For any n = 1, 2, . . .,

ρ(Tnx0, x) = ρ(T (Tn−1x0), Tx) ≤ βρ(Tn−1x0, x),

so that part (ii) of the theorem follows by induction.

Part (i) of Theorem 1 states that a fixed point of a contraction on a complete metric space
exists and is unique. Part (ii) of Theorem 1 states that starting from any intial point in x0 ∈ X,
repeated application of the contraction T gets you closer and closer to the unique fixed point.

Note that part (ii) of Theorem 1 bounds the distance between the nth iteration of the con-
traction and the fixed point, i.e. ρ(Tnx0, x), in terms of the distance between the initial initial
element x0 ∈ X and the fixed point, i.e. ρ(x0, x).

However, this bound may not be very useful if the fixed point is not yet known, in which
case you wouldn’t know ρ(x0, x). The following result instead provides a computationally useful
inequality.

Proposition 1. Let (X, ρ) be a complete metric space, T : X → X a contraction mapping with
modulus β,and x ∈ X the unique fixed point of T . For any x0 ∈ X,

ρ(Tnx0, x) ≤
1

1− β
ρ(Tnx0, T

n+1x0)

Exercise 1. Prove Proposition 1.

In contrast to part (ii) of Theorem 1, this proposition provides a bound that one can compute
without knowledge of the fixed point x.

2.1 Fixed Points on function spaces.

In the example provided at the beginning of these lecture notes, we conceptualized the metric
space (X, ρ) as a set in R with the Euclidean norm. However, in practice we most often apply the
Contraction Mapping theorem to contractions in function spaces.

Towards this, I’m going to simply restate the theorem in the space of functions we are in-
terested in. As in Lecture Notes 1, let X ⊆ RN . Let C(X) be the set of bounded, continuous
functions

f : X → R

with the sup norm
∥f∥ = sup

x∈X
|f(x)|.

Furthermore, recall that at the end of Lecture Notes 1, we proved that C(X) with the sup norm
is a complete, normed vector space.
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We next restate the Contraction Mapping Theorem in this particular context.

Theorem 2. The Banach Fixed Point Theorem/The Contraction Mapping Theorem, restated on
C(X).

Let X ⊆ RN and let C(X) be the space of bounded, continuous functions f : X → R with the
sup norm. Let T : C(X) → C(X) be a contraction mapping with modulus β; that is, for some
β ∈ (0, 1) ⊂ R,

∥Tf − Tg∥ ≤ β ∥f − g∥ , ∀f, g ∈ C(X).

Then:
(i) T has exactly one fixed point f ∈ C(X),

T f = f, and

(ii) for any f0 ∈ C(X),

∥Tnf0 − f∥ ≤ βn ∥f0 − f∥ , ∀n = 0, 1, 2, . . .

Proof. This follows from Theorem 1 and the fact that C(X) with the sup norm is a complete
normed vector space.

3 Blackwell’s Sufficient Conditions

In order to apply the contraction mapping theorem, one needs to not only check that the met-
ric space is complete, but one must also verify that the particular operator T in question is a
contraction. However, it is not always obvious whether a particular operator is or is not a con-
traction.

To solve this problem, one can often use the following sufficient conditions due to Blackwell.

Theorem 3. ( Blackwell’s sufficient conditions for a contraction.) Let X ⊆ Rn and let B(X) be the
space of bounded functions f : X → R with the sup norm. Let

T : B(X) → B(X)

be an operator satisfying the following two properties:
(i) ( monotonicity) f, g ∈ B(X) and f(x) ≤ g(x), for all x ∈ X implies

Tf(x) ≤ Tg(x), ∀x ∈ X;

(ii) ( discounting) there exists some β ∈ (0, 1) such that

[T (f + a)] (x) ≤ Tf(x) + βa, ∀f ∈ B(X), a ∈ R+, x ∈ X,

where f + a is the function defined by

(f + a)(x) = f(x) + a.
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Then T is a contraction with modulus β.

Proof. Let T : B(X) → B(X) be an operator that satisfies the two conditions stated above. For
any functions f, g ∈ B(X),

f(x)− g(x) ≤ ∥f − g∥ , ∀x ∈ X.

This implies
f(x) ≤ g(x) + ∥f − g∥ , ∀x ∈ X.

Conditions (i) and (ii) imply

Tf(x) ≤ T (g + ∥f − g∥)(x) ≤ Tg(x) + β ∥f − g∥ , ∀x ∈ X.

Therefore
Tf(x)− Tg(x) ≤ β ∥f − g∥ , ∀x ∈ X.

Next, reversing the roles of f and g, by the same logic we get that

Tg(x)− Tf(x) ≤ β ∥f − g∥ , ∀x ∈ X.

Together, these imply that

∥Tf − Tg∥ = sup
x∈X

|Tf(x)− Tg(x)| ≤ β ∥f − g∥

as was to be shown.

Blackwell’s result will play a key role in allowing us to apply the Contraction Mapping Theo-
rem to certain settings.
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