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The Neoclassical Growth Model (NGM), a.k.a. the Ramsey-Cass-Koopmans model, was de-
signed to depict how an economy might grow over time in a way that is consistent with growth
facts. However, another huge innovation of the NGM is that it incorporates explicit microfoun-
dations. That is, the NGM is a competitive general equilibrium model with utility-maximizing
households, profit-maximizing firms, and prices that clear markets. It incorporates features that
should be part of any plausible model, including:

• households like to consume and moreover like to smooth their consumption

• capital and labor are important inputs in production

• firms maximize profits, households maximize utility subject to budget constraints

The innovation that macro should be modeled as the general equilibrium of a micro-founded
economy with individual households and firms means that we can represent the paths of ag-
gregate consumption, investment, capital, output, and hours as market-clearing equilibrium
outcomes (as we saw in the decentralized competitive equilibrium of the NGM).

We now move to business cycles. In the previous lecture we documented a number of promi-
nent business cycle stylized facts. We now seek to develop a theoretical model that can help us
understand and rationalize these facts. Towards this goal, we follow the direction of Kydland and
Prescott (1982). We start with the Neoclassical Growth Model and modify it in two ways: (i) we
allow for endogenous labor supply (or a labor-leisure choice), and (ii) we add a particular type
of exogenous stochastic disturbance to technology.

1 The RBC Environment: Primitives

Here I set up the primitives of the Real Business Cycle economy, that is: technology, preferences,
and resource constraints. This treatment is similar to that in Cooley and Prescott (1995).

Time is discrete and infinite: t = 0, 1, . . ..

1.1 Production with Technology (TFP) Shocks

To formalize business cycles as a stochastic phenomenon, we need to introduce some source of
uncertainty (some type of exogenous stochastic disturbance) into the model. But what kind of
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uncertainty? If you look at the planner’s problem for the NGM, the only exogenous features in
that problem are preferences and technologies. Hence, a starting point would be to introduce
uncertainty into one of these features.

In the data, we saw that TFP as measured by by the Solow residual, fluctuates a lot over the
business cycle. This motivates us to introduce TFP shocks into the NGM and study the behavior
of the economy in response to these shocks. The goal is to see whether the observed TFP fluc-
tuations (which may be endogenous in reality but we will take them as exogenous in the model)
can generate fluctuations in all other macro variables (output, employment, consumption, etc)
that are similar to the observed business cycle fluctuations.

We assume the firm’s technology is now given by

Yt = ztF (Kt, Lt)

where zt is Total Factor Productivity (TFP) andF continues to be a neoclassical production func-
tion satisfying all of the regularity conditions previously stated.

We formalize uncertainty over TFP in the following way. In each period t = 0, 1, . . ., the
economy experiences one of finitely many events st. We let:

st ∈ S

where S is a finite set. We write realized productivity at time t as a function of the current state:
zt = z(st), where:

z : S → R+.

Because of the introduction of uncertainty, all economic variables in any given date may
depend not only on the calendar date t, and the current state st, but may also depend on the
entire history of events up to this date. We denote by

st = (s0, s1, ..., st−1, st) ∈ St

the history of events up to and including period t, where

St ≡ S × S × · · · × S.

We let all economic variables in the model be contingent on this history; equivalently, you can
think of the paths of consumption, investment etc as stochastic processes (stochastic paths). In
other words, there is a natural commodity space in which all goods are differentiated by histo-
ries.

We let π(st|st−1) denote the probability of history st conditional on st−1. With some abuse of
notation, we denote the ex-ante unconditional probability of history st by π(st). We assume the
initial realization s0 is given, i.e. π(s0) = 1.
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1.2 Preferences

We further modify preferences so that households now value leisure and face a labor-leisure
trade-off. The reason for adding this feature is to see if we can generate movements in labor over
the business cycle.

There is a continuum of infinitely-lived households of unit mass, indexed by i ∈ I ≡ [0, 1].
Households preferences are identical and given by their expected utility over all paths of con-
sumption and labor.

E
∞∑
t=0

βtU(cit, `
i
t) =

∞∑
t=0

∑
st∈St

βtπ(st)U(cit(s
t), `it(s

t)) (1)

where cit(s
t) and `it(s

t) is the consumption and labor of household i at time t, history st. We
assume that the flow (per-period) utility function U is continuously differentiable in both ar-
guments, it is increasing and concave in the first argument but decreasing and concave in the
second argument:

U` < 0 and U`` < 0

along with the Inada conditions (in order to ensure an interior solution).

1.3 Resource Contraints

We now let capital letters denote aggregate quantities and lower case letters denote individual
household quantities:

Ct(s
t) =

∫
cit(s

t)di, Lt(s
t) =

∫
`it(s

t)di, Kt(s
t) =

∫
kit(s

t)di, ∀t,

where kit is the physical capital holdings of household i at time t. The aggregate resource con-
straint is given by

Ct(s
t) +Kt+1(st) = z(st)F (Kt(s

t−1), Lt(s
t)) + (1− δ)Kt(s

t−1), ∀t.

2 The Planner’s Sequence Problem

We consider the planner’s problem for this economy. In particular, we consider a planner choos-
ing a complete contingent plan of individual household consumption, labor, and capital, as well
as the aggregate allocation of these objects:{

(cit(s
t), `it(s

t), kit+1(st))i∈I ;Ct(s
t), Lt(s

t),Kt+1(st)
}
st∈St

However, to make our lives simpler, note that the planner will necessarily choose:

cit(s
t) = Ct(s

t), `it(s
t) = Lt(s

t), kit+1(st) = Kt+1(st), ∀st ∈ St.
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That is, all households are ex-ante identical so the planner would optimally choose the same
allocation for each household. We will use this observation to simplify our problem—we hence-
forth drop the i superscript.

There are two formulations for this problem; we first consider the sequence problem and
afteward discuss the recursive formulation.We write the planner’s sequence problem as follows.

Planner’s Sequence Problem. Given initial k0 > 0, the planner chooses a complete contingent
plan {

ct(s
t), `t(s

t), kt+1(st)
}
st∈St

so as to maximize

max
∞∑
t=0

∑
st∈St

βtπ(st)U(ct(s
t), `t(s

t))

subject to the resource constraint

ct(s
t) + kt+1(st) = z(st)F (kt(s

t−1), `t(s
t)) + (1− δ)kt(st−1), ∀st ∈ St, (2)

and non-negativity constraints on consumption and capital:

ct(s
t) ≥ 0, kt+1(st) ≥ 0, ∀st ∈ St. (3)

We can think of the planner in period 0 as choosing an infinite sequence that describes all fu-
ture consumption, labor, and capital allocations for all histories st. That is, the planner chooses
a complete, contingent plan for the allocation.

Now that we have added shocks, note that the resource constraint (2) must hold not only at
every date t but also in every possible history, st.

For each history st, let βtπ(st)λ(st) be the multiplier attached to this constraint. We write the
Lagrangian for the planner’s problem as follows.

L =
∞∑
t=0

∑
st∈St

βtπ(st)U(ct(s
t), `t(s

t))

−
∞∑
t=0

∑
st∈St

βtπ(st)λ(st)
[
ct(s

t) + kt+1(st)− z(st)F (kt(s
t−1), `t(s

t))− (1− δ)kt(st−1)
]

In what follows, I will use the following shorthand notation:

Uc(s
t) =

∂U(c, `)

∂c

∣∣∣∣
c=ct(st),`=`t(st)

U`(s
t) =

∂U(c, `)

∂`

∣∣∣∣
c=ct(st),`=`t(st)

for the marginal utility of consumption and the marginal (dis)utility of labor, respectively. Simi-
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larly:

FL(st) =
∂F (K,L)

∂L

∣∣∣∣
K=kt(st−1),L=`t(st)

FK(st) =
∂F (K,L)

∂K

∣∣∣∣
K=kt(st−1),L=`t(st)

for the marginal product of labor and the marginal product of capital, respectively.
The first-order conditions of the planner’s problem are given by

ct : βtπ(st)Uc(s
t)− βtπ(st)λ(st) = 0

`t : βtπ(st)U`(s
t) + βtπ(st)λ(st)z(st)FL(st) = 0

kt+1 : −βtπ(st)λt(s
t) + βt+1

∑
st+1|st

π(st+1)λ(st+1)
[
1 + z(st+1)FK(st+1)− δ

]
= 0

Combining these FOCs yield the following conditions.

The Lagrange Multiplier. The multiplier is equal to the marginal utility of consumption:

λ(st) = Uc(s
t), ∀st ∈ St.

That is, the planner’s shadow value of resources at time t, history st is given by the marginal
utility of consumption.

The Intertemporal Condition. Also known as the Euler Equation. The optimality condition
between consumption today and consumption tomorrow is given by the following:

Uc(s
t) = β

∑
st+1|st

π(st+1|st)
[
Uc(s

t+1)
(
1 + z(st+1)FK(st+1)− δ

)]
, ∀st ∈ St

where I have used Bayes rule

π(st+1|st) =
π(st+1)

π(st)
.

We may rewrite this as follows

Uc(s
t) = βE

[
Uc(s

t+1)
(
1 + z(st+1)FK(st+1)− δ

)
|st
]
, ∀st ∈ St.

Giving up one unit of consumption today results in an extra unit of capital for tomorrow. Thus,
the marginal utility of consumption today must equal the expected marginal benefit (value) of
this extra unit of capital. The expected marginal value of an extra unit of capital tomorrow is the
expected marginal return on capital in terms of output times the marginal utility of consump-
tion, discounted by the discount factor. It is just another way of saying that the marginal cost
today of one unit less of consumption must equal the expected marginal benefit.

5



The Intratemporal Condition. The optimality condition between consumption and labor is
given by:

−U`(s
t) = Uc(s

t)z(st)FL(st), ∀st ∈ St.

The marginal disutility of labor must equal the marginal utility of consumption multiplied by
the marginal product of labor, state-by-state. That is, the marginal cost of labor is equal to the
marginal benefit. Another way to write this would be to divide through by Uc(s

t) as follows:

−U`(s
t)

Uc(st)
= z(st)FL(st), ∀st ∈ St.

The left hand side is the marginal rate of substitution between labor and consumption, and the
right hand side is simply the marginal rate of transformation. The marginal rate of transfor-
mation of labor into consumption is the marginal product of labor, i.e. z(st)FL(st). Optimality
equates the MRS with the MRT in every state.

The Transversality condition. As in the NGM, the planner’s transversality condition is given
by:

lim
t→∞

∑
st

βtπ(st)Uc(s
t)kt+1(st) = 0,

or alternatively:
lim
t→∞

βtE
[
Uc(s

t)kt+1(st)
]

= 0.

Solution to the Planner’s problem. The planner’s optimum is thereby given by the unique con-
tingent plan that satisfies the above optimality conditions along with the economy’s resource
constraint, the initial condition, and an expected value version of the transversality condition
(essentially the same as in the NGM deterministic case).

Proposition 1. The socially optimal allocation{
ct(s

t), `t(s
t), kt+1(st)

}
st∈St

is the unique contingent plan that satisfies, for every history, the following conditions:

Uc(s
t) = βE

[
Uc(s

t+1)(1 + z(st+1)FK(st+1)− δ)|st
]
, ∀st ∈ St; (4)

−U`(s
t)

Uc(st)
= z(st)FL(st), ∀st ∈ St; (5)

and
ct(s

t) + kt+1(st) = z(st)F (kt(s
t−1), `t(s

t)) + (1− δ)kt(st−1), ∀st ∈ St; (6)

along with the following boundary conditions:

k0 > 0 given, and lim
t→∞

βtE
[
Uc(s

t)kt+1(st)
]

= 0. (7)
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The solution to the planner’s problem in the RBC has similarities with the solution to the
planner’s problem in the NGM. Condition (6) is the resource constraint, summarizing feasibility
of the allocation (aside from the non-negativity constraints). It now must hold not only at every
date, but in every history st.

Condition (4) is the Euler equation, or the intertemporal optimality condition. it says that
the marginal cost of consuming one less unit of consumption today must equal the expected
marginal benefit. The marginal cost is marginal utility of consumption today. The marginal
benefit is the marginal value of an extra unit of capital tomorrow—that is, the marginal return
on capital in terms of output times the marginal utility of consumption, discounted by the dis-
count factor. The only difference between this condition and what we had in the NGM is the
conditional expectation operator, E

[
·|st
]
.

Condition (5) is the only truly “new” equation. We call it the intratemporal optimality condi-
tion. It states that the marginal rate of substitution between labor and consumption is equal to
the marginal rate of transformation.

3 The Recursive Formulation of the Planner’s Problem

We look for a stationary value function. For this we need to make a stationarity assumption
for the stochastic process for TFP. Specifically, we do not want the statistical properties of z to
change over time.

We assume that zt follows a Markov process with transition (conditional) probabilities
π(zt+1|zt).

Definition 1. A Markov process is a stochastic process describing a sequence of possible events
in which the probability of each event depends only on the state attained in the previous event.

π(zt+1|zt, zt−1, zt−2...) = π(zt+1|zt)

• Example 1: zt fluctuates between two states, a high state and a low state. That is, z = h

(high) and z = ` (low) with a transition matrix[
πhh πh`
π`h π``

]

• Example 2: the log of z follows an exogenous AR(1) process

log zt+1 = ρ log zt + εt+1 εt+1 ∼ N (0, σ2)

with ρ ∈ (0, 1).

If the productivity shock is Markov, that implies that a sufficient statistic for tomorrow’s produc-
tivity shock is today’s.

Corresponding to the sequence problem presented above, we may thereby write the plan-
ner’s problem recursively in terms of the following Bellman equation.
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Planner’s Bellman Equation.

V (k, z) = max
c,`,k′

U(c, `) + β
∑
z′|z

π(z′|z)V (k′, z′)

s.t. c+ k′ = (1− δ)k + zF (k, `)

Here the state variables are k, z. The control variables are c, `, k′. As we did before, let us
rewrite the Bellman equation by reducing it to only two control variables, `, k′ as follows

V (k, z) = max
`,k′∈Γ(k,z)

U
(
(1− δ)k + zF (k, `)− k′, `

)
+ β

∑
z′|z

π(z′|z)V (k′, z′) (8)

What is the feasible set for (`, k′)? The feasible set is as follows

(`, k′) ∈ Γ(k, z)

where
Γ(k, z) ≡

{
(`, k′)| ` ∈

[
0, `
]
, k′ ∈ [0, (1− δ)k + zF (k, `)]

}
where we have assumed an upper bound on labor of ` > 0. One can make sense of this upper
bound as there are only 24 hours in a day and hence only so many possible worker-hours per
quarter. (Sufficient convexity of the disutility of labor should make it so that we never hit this
upper bound anyway). We often normalize this upper bound to ` = 1.

Note that due to the stationarity assumption, the value function V does not change over time.
The state variables k and z change, but the value function itself is fixed.

Using the same techniques as before, the FOCs to the planner’s problem in (10) with respect
to k′ and ` are given by, respectively,

− Uc(c, `) + β
∑
z′|z

π(z′|z)Vk(k′, z′) = 0 (9)

and
U`(c, `) + Uc(c, `)zFL(k, `) = 0 (10)

along with the Benveniste-Scheinkman (envelope) condition,

Vk(k, z) = (1− δ + zFK(k, `))Uc(c, `). (11)

We thus derive following optimality conditions for the planner. First, from (10), the intratem-
poral condition given by

−U`(c, `)

Uc(c, `)
= zFL(k, `).

Second, by combining (9) with the Benveniste-Scheinkman condition in (11), we get the in-
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tertemporal condition, a.k.a. the Euler equation

Uc(c, `) = β
∑
z′|z

π(z′|z)(1− δ + z′FK(k′, `′))Uc(c
′, `′)

As we have shown before, the two formulations of the problem—the sequence problem and
the recursive formulation—are equivalent and deliver the same solution under some technical
restrictions. (Essentially you need to extend the earlier proofs to measurable spaces and mea-
surable functions. See Chapters 7-9 of Stokey, Lucas and Prescott (1989) for details.)

4 Decentralization

Thus far we have focused on the characterization of the planner’s problem—that is, on a ficti-
tious scenario in which a benevolent social planner directly controls allocations. We now turn
attention to the decentralized competitive equilibrium in this environment.

4.1 The Decentralized Environment

Similar to the decentralization of the NGM, in this economy there are households and firms.
There is a competitive labor market in which households supply their labor to firms and earn a
real wage rate denoted by wt (expressed in terms of period-t consumption).

Capital is owned directly by the households. There is a competitive capital market in which
households rent capital to the firms and earn a per-period real rental rate denoted by rt. Both
the market for labor and the market for capital are perfectly competitive; that is, all households
and all firms are price takers in these markets.

Firms employ labor and rent capital in competitive labor and capital markets, have access
to the same technology, and produce a homogeneous good that they sell competitively to the
households.

Finally, households can trade a riskless, one-period bond, with one another. The bond is in
zero net supply: households may borrow and lend from one another at an interest rate which is
henceforth denoted by Rt.

Firms. There is a continuum of identical firms which we aggregate into a representative firm.
The representative firm’s technology is given by

Yt = ztF (Kt, Lt)

where zt represents an exogenous shock to TFP and F continues to be a neoclassical production
function that satisfies all regularity conditions.

In each period, the representative firm employs labor, rents capital, and produces a homoge-
neous good that is sold in a competitive market to the households. We therefore treat the firm’s
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problem as a period-by-period and state-by-state profit maximization problem given by:

max
Kt,Lt

ztF (Kt, Lt)− rtKt − wtLt.

Households. There is a continuum of households of unit mass, indexed by i ∈ [0, 1]. Household
preferences are identical and given by (1). Each household is endowed with initial capital level
k0. Let kit denote the capital stock owned by household i at the beginning of period t and let bit
be its corresponding position in the bond market.

The household takes its initial capital level k0 > 0 and initial bond position b0 = 0 as given.
We express the household’s problem as follows.

Household’s Problem. The household chooses a complete contingent plan,{
ct(s

t), `t(s
t), kt+1(st), bt+1(st)

}
st∈St

in order to maximize lifetime expected utility

max
∞∑
t=0

∑
st∈St

βtπ(st)U(ct(s
t), `t(s

t))

subject to:

ct(s
t)+kt+1(st)+bt+1(st) = rt(s

t)kt(s
t−1)+wt(s

t)`t(s
t)+(1−δ)kt(st−1)+(1+Rt(s

t−1))bt(s
t−1), ∀t, st

(12)
ct(s

t) ≥ 0, kt+1(st) ≥ 0, ∀t, st

bt+1(st) ≥ b, ∀t, st.

with
k0 > 0 and b0 = 0 given.

The period-t budget constraint of the household is given by (12). That is, the household uses
its labor income, capital income, and savings to finance consumption or investment in either
physical capital or the risk-free bond.

Here I make the assumption that the return on bonds are non-state-contingent. Thus,
Rt+1(st) is the riskless rate; for this reason it is measurable in st.

Note furthermore that for the hosuehold’s problem, I have added an “ad hoc” borrowing con-
straint of the form

bt+1(st) ≥ b, ∀t, st, (13)

where b < 0 is an arbitrary limit on how much the household can borrow in every period.
We say that such a sequence, or plan, {cit(st), `it(st), kit+1(st), bit+1(st)}Tt=0 is optimal for the

household if it solves the household’s problem.
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Market Clearing. We assume that labor, capital, bond, and goods market must clear every pe-
riod:

Ct(s
t) =

∫
cit(s

t)di, Lt(s
t) =

∫
`it(s

t)di, Kt+1(st) =

∫
kit+1(st)di,

and bonds are in zero net supply: ∫
bit(s

t)di = 0

The representative household and the representative firm. Because all households are iden-
tical, we will consider the “representative household” of the economy. We will also consider the
“representative firm.” This implies:

cit(s
t) = Ct(s

t), `it(s
t) = Lt(s

t), kit+1(st) = Kt+1(st), ∀st ∈ St. (14)

and we henceforth drop the i superscript.

4.2 Equilibrium Definition

We define a competitive equilibrium in this economy as follows.

Definition 2. An equilibrium is a state-contingent price sequence

{wt(s
t), rt(s

t), Rt+1(st)}st∈St

a state-contingent plan for the representative household,

{ct(st), `t(st), kt+1(st), bt+1(st)}st∈St ,

and a state-contingent plan for the representative firm,

{Kt(s
t−1), Lt(s

t)}st∈St ,

such that the following hold:
(i) given the price sequence, the sequence {ct(st), `t(st), kt+1(st), bt+1(st)} solves the repre-

sentative household’s problem,
(ii) given the price sequence, the sequence {Kt(s

t−1), Lt(s
t)} solves the representative firm’s

problem, and
(iii) markets clear.

Remarks. Note that the equilibrium is a fixed point between prices and allocations. This dis-
tinguishes it from the planner’s solution, which was defined as a feasible allocation that max-
imizes welfare. Also note that unlike the definition of the planner’s problem, the definition of
an equilibrium does not a priori require that the allocation be feasible. However, any allocation
that clears all markets trivially satisfies the economy’s resource constraints, which means that
any equilibrium allocation is indeed feasible.
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Finally note that the solution concept requires that in any given moment the households
know the prices that will clear the markets in all future states (firms just need to know the prices
this period). This notion is what is known as “Rational Expectations.” The key assumption is
that the subjective beliefs that any given agent forms about future prices (or any other endoge-
nous economic outcome) coincide with the true, objective processes that these objects follow in
equilibrium (as the result of the joint behavior of all agents).

4.3 Equilibrium Characterization

We now characterize a competitive equilibrium in this economy.

Firms. Consider first the firms. The firm’s problem is relatively straightforward as it simply
solves it period-by-period. This yields the following FOCs:

rt(s
t) = z(st)FK(st), ∀t, st (15)

wt(s
t) = z(st)FL(st), ∀t, st (16)

Therefore, the real wage and real rental rate must be equal to the marginal product of labor and
the marginal product of capital, respectively.

Households. Next, consider the household’s problem. The households in this economy face a
much more difficult problem as they must take into account the entire sequence of prices in the
future.

The household’s problem yields the following optimality conditions. First we have that the
household’s intratemporal optimality condition is given by

−U`(s
t) = wt(s

t)Uc(s
t), ∀t, st

which we may rewrite as

−U`(s
t)

Uc(st)
= wt(s

t), ∀t, st.

That is, the household finds it optimal to equate its marginal rate of substitution between labor
and consumption with the real wage.

The household’s intertemporal condition with respect to capital is given by

Uc(s
t) = β

∑
st+1|st

π(st+1|st)
[
(1 + rt+1(st+1)− δ)Uc(s

t+1)
]
, ∀t, st

and kt+1(st) ≥ 0 with complementary slackness. We can rewrite this as

Uc(s
t) = βEt

[
(1 + rt+1(st+1)− δ)Uc(s

t+1)
∣∣ st] , ∀t, st
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The household’s intertemporal condition with respect to bonds is given by

Uc(s
t) = β

∑
st+1|st

π(st+1|st)
[
(1 +Rt+1(st))Uc(s

t+1)
]
, ∀t, st

and bt+1(st) ≥ bwith complementary slackness. Given that we have assumed bonds are riskless,
this last condition may be rewritten as follows

Uc(s
t) = β(1 +Rt+1(st))Et

[
Uc(s

t+1)
∣∣ st] , ∀t, st.

Finally the household’s boundary conditions are given by the initial condition k0 > 0 and the
transversality condition:

lim
t→∞

βtE
[
Uc(s

t)kt+1(st)
]

= 0. (17)

From the budget constraint to the resource constraint. By letting bt+1(st) = 0, we can hence-
forth reduce the budget constraint of the household to the following:

ct(s
t) + kt+1(st) = rt(s

t)kt(s
t−1) + wt(s

t)`t(s
t) + (1− δ)kt(st−1), ∀st ∈ St.

Finally, if we replace the rental and wage rate from the firm’s optimality conditions, (15) and (16),
into the above equation we reach the following condition:

ct(s
t) + kt+1(st) = z(st)FK(st)kt(s

t−1) + z(st)FL(st)`t(s
t) + (1− δ)kt(st−1), ∀st ∈ St.

Therefore

ct(s
t) + kt+1(st) = z(st)F (kt(s

t−1), `t(s
t)) + (1− δ)kt(st−1), ∀st ∈ St;

which is the resource constraint of the economy as a whole.
Combining these findings, we obtain the following characterization of the equilibrium.

Proposition 2. An allocation {
ct(s

t), `t(s
t), kt+1(st)

}
st∈St

is part of an equilibrium if and only if it satisfies:

Uc(s
t) = βE

[
Uc(s

t+1)
(
1 + z(st+1)FK(st+1)− δ

)
|st
]
, ∀st ∈ St; (18)

−U`(s
t)

Uc(st)
= z(st)FL(st), ∀st ∈ St; (19)

and
ct(s

t) + kt+1(st) = z(st)F (kt(s
t−1), `t(s

t)) + (1− δ)kt(st−1), ∀st ∈ St; (20)

along with the following boundary conditions:

k0 > 0 given, and lim
t→∞

βtE
[
Uc(s

t)kt+1(st)
]

= 0. (21)
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For any such sequence, the associated sequence of equilibrium prices{
wt(s

t), rt(s
t), Rt+1(st)

}
st∈St

are given by:

rt(s
t) = z(st)FK(st), ∀st ∈ St (22)

wt(s
t) = z(st)FL(st), ∀st ∈ St (23)

and
Uc(s

t) = β(1 +Rt+1(st))Et

[
Uc(s

t+1)
∣∣ st] , ∀st ∈ St

Similar to the NGM, Proposition 2 has two parts, one about allocations (quantities) and an-
other about equilibrium prices.

The first part says that conditions (18-21) are necessary and sufficient for an allocation to
be part of an equilibrium. Note that these conditions do not involve prices: they permit us
to test whether a candidate allocation is part of an equilibrium without looking at prices and
market clearing! We henceforth refer to any allocation that satisfies (18-21) as an “equilibrium
allocation.”

The second part gives us the prices that “support” an equilibrium allocation. By this we mean
the prices that have the following property: when the representative firm and the representative
household face these prices, their optimal behavior admits the allocation under consideration.

4.4 Comparison between equilibrium allocations and the planner’s solution

Consider Proposition 2 that characterize an equilibrium. Let us focus on conditions (18-21),
which alone pin down an equilibrium allocation. We will now compare this to the conditions
stated in Proposition 1 that characterize the solution to the planner’s problem.

Condition (20) is simply the resource constraint for the economy: it describes the alloca-
tions that are technologically feasible. Note that it is the same as condition (6) in the planner’s
solution.

Condition (18) is the equilibrium Euler equation—also called the equilibrium intertempo-
ral condition. It equates the marginal rate of substitution (MRS) between consumption today
and tomorrow with the corresponding marginal rate of transformation (MRT). Note that it is the
same as condition (4) in the planner’s solution. In Proposition 2 this condition is interpreted as
an equilibrium condition: it describes the joint optimality of the households, the firms, and mar-
ket clearing. On the other hand, in Proposition 1, this condition is interpreted as the optimality
condition of the social planner.

Condition (19) is the equilibrium intratemporal condition. It equates the marginal rate of
substitution (MRS) between labor and consumption with the corresponding marginal rate of
transformation (MRT). Note that it is the same as condition (5) in the planner’s solution. In
Proposition 2 this condition is interpreted as an equilibrium condition: it describes the joint
optimality of the households, the firms, and market clearing. On the other hand, in Proposition
1, this condition is interpreted as the optimality condition of the social planner.
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Finally, the boundary conditions in (21) coincide with the boundary conditions of the plan-
ner’s solution (7).

Comparing the dynamic system of Proposition 2 with the one we had obtained for the plan-
ner’s problem, Proposition 1, and noting that the planner’s solution exists and is unique, we
reach the following conclusion:

Theorem 1. The competitive equilibrium allocation is unique and coincides with the planner’s
solution.

We have therefore proved that the welfare theorems hold in the economy under considera-
tion. These findings permit a direct reinterpretation of the optimal path characterized in Propo-
sition 1 as the equilibrium path of the economy. The only novel applied lesson is that once we
have the optimal sequence of consumption, labor, and capital from the planner’s solution, we
may obtain the model’s predictions for the equilibrium rental rate and wage rate by reading it off
the marginal products of capital and labor as in (22) and (23).

Again, as in the NGM, in the RBC model the incentives of the households and the firms
are such that their joint optimality are aligned with the social planner’s optimality. In other
economies, such as those that feature externalities, monopoly power, or other types of distor-
tions, this won’t necessarily be the case, i.e. the planner’s solution may not coincide with equi-
librium allocations.

References

Cooley, Thomas F. and Edward C. Prescott, “Chapter 1: Economic Growth and Business Cycles,”
in “Frontiers of Business Cycle Research,” Princeton University Press, 1995.

Kydland, Finn E. and Edward C. Prescott, “Time to Build and Aggregate Fluctuations,” Econo-
metrica, 1982, 50 (6), 1345–1370.

Stokey, Nancy L., Robert E. Lucas, and Edward C. Prescott, Recursive Methods in Economic Dy-
namics, Harvard University Press, 1989.

15


