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Consider the planner’s problem in the Neoclassical Growth Model, a.k.a. the Ramsey-Cass-
Koopmans model. We will first write it down in the form of a sequence problem, but we will then
reconsider it through the lens of dynamic programming. This lecture is similar to Chapter 2 of
Stokey, Lucas and Prescott (1989).

1 The Neoclassical Growth Model

Consider the planner’s problem in the Neoclassical Growth Model in discrete time. We assume
time is discrete and indexed by t = 0, 1, . . . ,∞. We write the planner’s problem as follows.

Planner’s Problem. Taking the initial condition as given:

k0 > 0.

the social planner chooses an infinite sequence for consumption and capital,

{ct, kt+1}∞t=0,

so as to maximize the utility of the representative agent:

∞∑
t=0

βtU(ct) (1)

with β ∈ (0, 1), subject to the resource constraint,

ct + kt+1 = f(kt) + (1− δ)kt, ∀t ≥ 0 (2)

and non-negativity constraints,

ct ≥ 0, kt+1 ≥ 0, ∀t ≥ 0.

We call this problem the sequence problem.
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Note that I am already writing the aggregate resource constraint with equality: if it were not
satisfied at the planner’s optimum with equality, then resources would have been left unused.
The social planner could have raised social welfare simply by letting the household consume
the unused resources.

Assumptions. By the Neoclassical assumptions on F (K,L), we have that f(k) is continuous,
twice-differentiable, and satisfies:

f(0) = 0, f ′(k) > 0, f ′′(k) < 0

as well as the Inada conditions:

lim
k→0

f ′(k) =∞, and lim
k→∞

f ′(k) = 0.

For preferences, we make the typical regularity assumptions on U . That is, it is continuous,
twice-differentiable, strictly increasing and strictly concave:

U ′(c) > 0, U ′′(c) < 0

and satisfies the Inada conditions:

lim
c→0

U ′(c) =∞, and lim
c→∞

U ′(c) = 0.

2 Solution using the Lagrangian Method

One way of solving the sequence problem is to use the Lagrangian method. The main technical-
ity one must be aware of, however, is that there are issues when dealing with infinite spaces.

By this I mean that what one typically does is set up the Lagrangian as if the horizon were
finite: t ∈ {0, 1, ...T} for some finite but large T ≥ 1. One can then take a “hand-waving” limit as
T approaches infinity. However, one needs to formally prove that this is the unique and correct
solution to the planner’s problem.

Let T < ∞. Letting βtλt denote the Lagrange multiplier on the period-t resource constraint
(2), we have that the Lagrangian of the social planner’s problem is given by:

L =

T∑
t=0

βtU(ct)−
T∑
t=0

βtλt [ct + kt+1 − (1− δ)kt − f(kt)]

We can then rewrite the Lagrangian as

L =

T∑
t=0

βt {U(ct)− λt [ct + kt+1 − (1− δ)kt − f(kt)]}

Note that λt measures the planner’s period-t shadow value of period-t resources—in short, it is
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the marginal social value of resources at time t.
One can henceforth assume an interior solution. As long as kt > 0, an interior solution is

indeed ensured by the Inada conditions on f and U. I will not characterize the solution to this
problem in the interest of time, but you will probably do so in Xavier’s class.

3 The Recursive Formulation

Instead in this class we will pursue another approach to solving this problem called dynamic
programming.

Although we stated this problem as one of choosing infinite sequences for consumption and
capital, {ct, kt+1}∞t=0, starting from period zero, we can in fact restate the problem of the plan-
ner as one of choosing today’s consumption c0 and tomorrow’s beginning of period capital k1
and nothing else. The rest can wait until tomorrow. But the question is: what are the planner’s
preferences over current consumption and next period’s capital?

The basic idea is to define a function that gives the value of next period’s capital k1. How
would one do this? Suppose we had already solved the planner’s problem stated above for all
possible values of initial capital k0. Then we could define a function

v : R+ → R

by letting v(k0) be the maximized objective function in (1) given k0 > 0.
That is, suppose we solve this and get the optimal plan {c∗t , k∗t+1}∞t=0, given some initial capital

k0 > 0. Then we define the function v(k0) to be

v(k0) =
∞∑
t=0

βtU(c∗t ), given k0 > 0.

That is, it v(k0) is the value of the maximized objective starting off with initial capital level k0 > 0.

We call this function the value function.
With the value function v so defined, v(k1) would then be the value of utility from period

1 on that could be obtained with a beginning-of-period capital stock k1, and βv(k1) would be
the value of this utility discounted back to period 0. Then in terms of this value function v, the
planner’s problem in period 0 could be written as follows:

max
c0,k1

[U(c0) + βv(k1)] (3)

subject to resource and non-negativity constraints:

c0 + k1 = γ(k0), c0 ≥ 0, k1 ≥ 0

and initial capital level k0 > 0 given, where I have simply let the function γ denote the total goods
available in the period:

γ(k0) ≡ f(k0) + (1− δ)k0.
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Note that I am using the fact that no goods are wasted.
At this point we do not “know” the function v but we have defined it as the maximized ob-

jective function for the problems stated in (1). Thus, if solving (3) provides the solution for that
problem, then v(k0) must be the maximized objective function for (3) as well. That is, the func-
tion v must satisfy

v(k0) = max
k1∈[0,γ(k0)]

[U(γ(k0)− k1) + βv(k1)]

where we have again used the fact that goods will not be wasted.
Note that when the problem is written in this recursive way, the time subscripts are unnec-

essary: the problem is the same at every single date. Thus, we can rewrite the problem facing the
planner with current capital stock k as

v(k) = max
k′∈[0,γ(k)]

[
U(γ(k)− k′) + βv(k′)

]
(4)

where k′ is used to denote capital taken into next period. Equation (4) is called the functional
equation. It is also known as the Bellman equation, named after Richard Bellman (1957). The
study of dynamic optimization problems through the analysis of Bellman equations is called
dynamic programming.

As I’ve alluded to previously, even though this example is from growth theory, Bellman equa-
tions are regularly applied in dynamic settings in business cyle macro, industrial organization,
structural labor, and finance. In order to establish the existence of the value function, one must
use the Contraction Mapping Theorem (Lecture Notes 2), among other theorems. We are work-
ing towards understanding the Bellman equation and using this solution method in this class.
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