
Optimization

Jennifer La’O*

Almost all of economics is about optimization. In these lecture notes, we consider optimiza-
tion problems inRN . These lecture notes draw on material found in Ok (2007), Sundaram (1996),
and Rudin (1976).

1 Basic Topology on RN

Let’s start with some basic topology. For our purposes, I will define open sets, closed sets, and
compact sets on RN with the Euclidean norm. For a more general treatment, please see Rudin
(1976).

1.1 Open Sets

Definition 1. Let X ⊆ RN . X is open if for every x ∈ X there exists an ϵ > 0 such that

Bϵ(x) ⊆ X.

To make this more concrete, consider the following example of an open set.

Example: an open interval in R. Let X ≡ (a, b) ⊂ R. That is, let a, b ∈ R with a < b, and X is
the open interval in R defined by:

X ≡ {x ∈ R|a < x < b}.

To see that this is an open set in R, we take any point x ∈ (a, b) and define

ϵ = min{x− a, b− x} > 0.

By construction, Bϵ(x) ⊆ X.
Note that all open balls are open sets.
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1.2 Closed Sets

Definition 2. Let X ⊆ RN . X is closed if for every sequence {xn}∞n=0 in X that converges to
x̄ ∈ RN ,

x̄ ∈ X.

That is, a set is closed if every limit point of X is an element of X.

Theorem 1. A set X is closed if and only if its complement Xc is open.

Proof. First, Sufficiency. We first prove that if Xc is open, then X is closed.
Suppose that Xc is open. Consider any sequence {xn}∞n=0 such that xn ∈ X for all n and

converges to some x̄ ∈ RN . We need to show that x̄ ∈ X.
We prove this by contradiction. Suppose that x̄ ∈ Xc. Since Xc is open, there is some ϵ > 0

for which
Bϵ(x̄) ⊆ Xc.

Since xn → x̄, there is an Nϵ ∈ N such that

∥xn − x̄∥ < ϵ.

for all n ≥ Nϵ. Then for any n ≥ Nϵ, we have that xn ∈ Bϵ(x̄) ⊆ Xc. That is, xn is inside the open
ball we constructed which is contained in Xc. But this is a contradiction. Therefore x̄ ∈ X.

Second, Necessity. We need to prove that if X is closed, then Xc is open. I will leave this part
of the proof as an exercise.

Exercise 1. Prove necessity: If X is closed, then its complement Xc is open.
Specifically, fix an element x ∈ Xc. One needs to show that there exists an ϵ > 0 such that

Bϵ(x) ⊆ Xc. The easiest way to prove this is by contradiction.

Consider the following example of a closed set.

Example: a closed interval in R. Let X ≡ [a, b] ⊂ R. That is, let a, b ∈ R with a < b, and X is the
closed interval defined by:

X ≡ {x ∈ R|a ≤ x ≤ b}.

To see that this is a closed set in R, note that its complement,

Xc = (−∞, a) ∪ (b,∞)

is open. We then apply Theorem 1.2.

1.3 Interior of Sets

Definition 3. Let X ⊆ RN . We say that a point x is an interior point of the set X if there exists
an ϵ > 0 such that Bϵ(x) ⊆ X. The set of all interior points of X is called the interior of X and is
usually denoted by int(X).

Note that by definition int(X) ⊆ X.
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1.4 Bounded Sets

Recall the definition of bounded sets in R from Lecture 1. Let me generalize this definition for
sets in RN .

Definition 4. Let X ⊆ RN . X is bounded if there exists an M > 0 such that

X ⊆ BM (0).

That is, X is bounded if it is completely contained in some open ball centered at the origin.
Please note that this definition is only a slight generalization of the definition of boundedness
that I gave you in lecture 1. There, for X ⊆ R, X was said to be bounded if |x| ≤ M for all x ∈ X.
Now, for X ⊆ RN , X is said to be bounded if ∥x∥ ≤ M for all x ∈ X where ∥·∥ is the Euclidean
norm.

1.5 Compact Sets

Definition 5. Let X ⊆ RN . X is compact if it is closed and bounded.

For the purists out there: I admit that this is a non-kosher way of defining compactness.
Technically, the definition is the following: “Let (X, ρ) be metric space. S ⊆ X is compact if
every open cover of S contains a finite subcover,” Rudin (1976), page 36. One then shows that a
set S ⊂ RN is compact if and only if it is closed and bounded; see Rudin (1976), page 40. In other
words, the definition I provide above is a result.

In my opinion, the more general definition of compactness is unnecessarily complex for al-
most all applications of compactness in economics. I’ve never once had to use it (outside of my
undergraduate math classes). Whereas, I feel as though I use the definition of compactness in
RN as being closed and bounded all the time!

For example, the closed interval X ≡ [a, b] ⊂ R, is compact.
For the next result, we need to define the image of a set under a function.

Definition 6. Let f : X → Y . Let A ⊆ X. The image of A under f , denoted by f [A], is the set:

f [A] ≡ {y ∈ Y |f(x) = y for some x ∈ A}.

In particular, the image f [X] of the whole domain X is called the range of f .

Theorem 2. Let X ⊆ RN and let f : X → R be continuous. Let A ⊆ X be compact.
The image of A under f , f [A], is compact.

Exercise 2. Prove Theorem 2.

In other words, the image of a compact set under a continuous function is compact.
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2 Supremum and Infimum: a useful result

Let X ⊆ R. Recall our definition of the sup and the inf from Lecture Notes 1, which I am repeat-
ing here to make our lives easier:

Definition 7. A real number α ∈ R is the least upper bound of X, or the supremum of X, denoted
by α = supX, if it satisfies the following properties: (i) α is an upper bound of X, and, (ii) if γ < α,
then γ is not an upper bound of X.

Analogously, a real number β ∈ R is the greatest lower bound of X, or the infimum of X,
denoted by β = infX, if it satisfies the following properties: (i) β is a lower bound of X and (ii) if
γ > β then γ is not an lower bound of X.

Let us state and prove the following useful result about the supremum.

Theorem 3. α = supX if and only if for all ϵ > 0 the following is true:
(i) x < α+ ϵ for all x ∈ X, and
(ii) x > α− ϵ for some x ∈ X.

Proof. First, Necessity. Let α = supX and ϵ > 0 be arbitrary.
(i) Since α is an upper bound of X, then x ≤ α for all x ∈ X. Therefore, x < α+ ϵ for all x ∈ X.
(ii) Suppose that the statement in part (ii) were not true. Then x ≤ α − ϵ for all x ∈ X. This

would imply that α′ = α− ϵ is an upper bound for X and α′ < α. However this cannot be true if
α = supX (by definition of the sup). This is a contradiction; we thus conclude that α− ϵ < x for
some x ∈ X.

Second, Sufficiency.
If for all ϵ > 0 , x < α+ ϵ for all x ∈ X, then x ≤ α for all x ∈ X. This implies that α is an upper

bound of X.
Suppose that α is not the least upper bound. Then there must exist another upper bound of

X, call it α′, such that α′ < α. Let
ϵ′ ≡ α− α′ > 0.

From part (ii) we know that there exists some x ∈ X such that

x > α− ϵ′ = α′.

But this contradicts the statement that α′ is an upper bound of X. Therefore α must be the least
upper bound.

Proposition 1. Let X ⊆ R and suppose α = supX exists. There exists a sequence {xn}∞n=0 in X

that converges to α.

Exercise 3. Use Theorem 3 in order to prove Proposition 1. (This should be close to trivial.
Proposition 1 is basically a corollary of Theorem 3.)
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3 Maximum and Minimum

Let X ⊆ R. Relative to the sup and the inf, we will also at times need a stronger concept of
extrema, in particular one that implies that the extrema lie within the set.

Definition 8. A point a ∈ R is the maximum of a set X ⊆ R, denoted by

a = maxX

if a ∈ X and x ≤ a for all x ∈ X.
A point b ∈ R is the minimum of a set X ⊆ R, denoted by

b = minX

if b ∈ X and x ≥ b for all x ∈ X.

The following two theorems are fairly intuitive.

Theorem 4. If maxX exists, then
(i) it is unique, and
(ii) the supX exists and supX = maxX.

Proof. Suppose the maxX exists. Let a = maxX.
(i) We prove this by contradiction. Suppose a1 and a2 are both maxima of the set X and

a1 ̸= a2. Then a1, a2 ∈ X. By definition of the maxima:

a1 ≤ a2, and a2 ≤ a1.

But this implies that a1 = a2, a contradiction. We thus conclude that the max is unique.
(ii) Let α be an arbitrary upper bound of X. Since a = maxX ∈ X, then

α ≥ maxX.

Furthemore, maxX is an upper bound of X. It follows that supX exists and supX = maxX.

Theorem 5. If supX exists and supX ∈ X, then maxX exists and maxX = supX.

Proof. Suppose supX exists and supX ∈ X. Let α = supX.
Then α ≥ x for all x ∈ X and α ∈ X. Therefore, maxX exists and maxX = α.

3.1 Extrema of functions

Typically, it is of more interest in economics to find extrema of functions rather than extrema of
sets. To a large extent, there is no real distinction: looking for the maximum of a function over its
domain is the same as looking for the maximum of the image of the domain under the function.
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Definition 9. An element x̄ ∈ X ⊆ RN is a global maximizer of f : X → R if

f(x) ≤ f(x̄)

for all x ∈ X.

If x̄ is a global maximizer of f , then f(x̄) is a global maximum of f . We typically write this as:

f(x̄) = max
x∈X

f(x)

and
x̄ ∈ argmax

x∈X
f(x)

Note that there is a conceptual difference between a maximum and a maximizer. Further-
more, a function can have at most one global maximum even if it has multiple global maximiz-
ers.

Definition 10. An element x̄ ∈ X ⊆ RN is a local maximizer of f : X → R if there exists some
ϵ > 0 such that

f(x) ≤ f(x̄)

for all x ∈ Bϵ(x̄) ∩X. If x̄ is a local maximizer of f , then f(x̄) is a local maximum of f .

4 Weierstrass Theorem: existence of the max and the min

Most of the time in economics, the problems we are interested in are optimization problems in
which we maximize or minimize a function (often called the objective function) over a set.

We would like to have some conditions that guarantee that the solutions to such problems
exist.

Theorem 6. The Weierstrass Theorem.
Let X ⊆ Rn be nonempty and compact. If the function f : X → R is continuous, then f attains

a maximum and minimum on X, i.e. there exists xh, xℓ ∈ X such that

f(xℓ) ≤ f(x) ≤ f(xh)

for all x ∈ X.

Proof. Since X is compact and f is continuous, then the image of X under f , f [X], is compact;
Theorem 2.

Let α = sup f [X]; this is well-defined because f [X] is bounded. By Proposition 1, there exists
a sequence {yn}∞n=0 in f [X] that converges to α.

Since f [X] is compact, it is closed. Since it is closed, α = sup f [X] ∈ f [X]. Therefore, by
Theorem 5, max f [X] exists and max f [X] = sup f [X]. Finally, there exists an xh ∈ X such that

f(xh) = max f [X],
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and by definition of the max,
f(x) ≤ f(xh)

for all x ∈ X. The proof for the minimum is analogous.

When the domain of a continuous function is compact, then the function attains a maximum
and minimum on its domain.

The next exercise should make you think about what could potentially go wrong without
each of those conditions.

Exercise 4. For the following examples, you can either write the sets and functions down in
terms of mathematical notation or simply draw them:
(a) Provide an example of an unbounded set X ⊆ R and a continuous function f : X → R in
which a maximum of the function on its domain does not exist.
(b) Provide an example of a bounded but open set X ⊆ R and a continuous function f : X → R
in which a maximum of the function on its domain does not exist.
(c) Provide an example of a compact set X ⊆ R and a discontinuous function f : X → R in
which a maximum of the function on its domain does not exist.

It is important to note that the Weierstrass Theorem only gives us sufficient conditions for a
maximum and minimum to exist. These conditions are by no means necessary. One can think
of many examples in which these conditions do not hold, yet a maximum of the function exists.
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