
Convex Structures in Optimization Theory

Jennifer La’O*

In this lecture we study convex optimization problems. These lecture notes draw on material
found in Chapter 7 of Sundaram (1996).

1 Convexity

1.1 Convex Sets

A set is convex if the line segment connecting any two elements x, x′ in X are contained in X.

Definition 1. Let X ⊆ RN . X is convex if for all x, x′ ∈ X and θ ∈ [0, 1],

θx+ (1− θ)x′ ∈ X.

For example, open balls are convex.

1.2 Concave and Convex functions

Building on this definition of convex sets, we introduce two classes of functions called concave
and convex functions.

Definition 2. Let X be a convex subset of RN . Let f : X → R.
(i) f is concave if for all x, x′ ∈ X and θ ∈ [0, 1],

f(θx+ (1− θ)x′) ≥ θf(x) + (1− θ)f(x′).

(i) f is strictly concave if for all x, x′ ∈ X, x ̸= x′, and θ ∈ (0, 1),

f(θx+ (1− θ)x′) > θf(x) + (1− θ)f(x′).

It is worth mentioning that the domain of f must be a convex set in order for f to be a concave
function. Otherwise, the idea of concavity is undefined.
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Definition 3. Let X be a convex subset of RN . Let f : X → R.
(i) f is convex if for all x, x′ ∈ X and θ ∈ [0, 1],

f(θx+ (1− θ)x′) ≤ θf(x) + (1− θ)f(x′).

(i) f is strictly concave if for all x, x′ ∈ X, x ̸= x′, and θ ∈ (0, 1),

f(θx+ (1− θ)x′) < θf(x) + (1− θ)f(x′).

Note that the notions of concavity and convexity are neither exhaustive nor mutually exclu-
sive; that is, there are functions that are neither concave nor convex, and functions that are both
concave and convex. For example, linear (affine) functions are both concave and convex.

Exercise 1. (a) Show that the linear function f : RN → R defined by f(x) = a · x + b, with
a ∈ RNand b ∈ R is both concave and convex.

(b) Conversely, show that if f : RN → R is both convex and concave, then it is a linear
function.

2 Implications of Convexity

Recall our definitions of global and local maxima from the previous lecture.

Definition 4. An element x̄ ∈ X ⊆ RN is a global maximizer of f : X → R if

f(x) ≤ f(x̄)

for all x ∈ X. If x̄ is a global maximizer of f , then f(x̄) is a global maximum of f .

Definition 5. An element x̄ ∈ X ⊆ RN is a local maximizer of f : X → R if there exists some
ϵ > 0 such that

f(x) ≤ f(x̄)

for all x ∈ Bϵ(x̄) ∩X. If x̄ is a local maximizer of f , then f(x̄) is a local maximum of f .

In economics we are often interested in problems of the following form:

max
x∈X

f(x).

where X is the constraint set and f is the objective function.

Definition 6. We refer to a maximization problem as a convex maximization problem if the con-
straint set is convex and the objective function is concave.

Similarly, we refer to a minimization problem as a convex minimization problem if the con-
straint set is convex and the objective function is convex.

More generally, we refer to an optimization problem as a convex optimization problem if it is
either of the above.
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We will now study some general results of convex optimization. All results are stated in the
context of convex maximization problems, but each has an exact analogue in the context of
convex minimization problems.

Theorem 1. Let X ⊂ RN be convex, and let f : X → R be concave. If x1 is a local maximizer of f
on X, then it is also a global maximizer.

Proof. Since x1 is a local maximizer of f , there exists an ϵ > 0 such that f(x1) ≥ f(x) for all
x ∈ Bϵ(x1) ∩X.

Suppose x1 is not a global maximizer. Then there exists an x2 ∈ X such that

f(x2) > f(x1).

Clearly, x2 /∈ Bϵ(x1).
Since X is convex,

θx1 + (1− θ)x2 ∈ X

for all θ ∈ (0, 1).
Pick θ sufficiently close to 1 so that z = θx1 + (1− θ)x2 ∈ Bϵ(x1). By concavity of f

f(z) ≥ θf(x1) + (1− θ)f(x2) > f(x1)

where the second inequality is due to f(x2) > f(x1). Thus f(z) > f(x1). But z ∈ Bϵ(x1) by
construction, so this is a contradiction.

Therefore, if a strictly concave function has a local maximum, then that point is a global
maximum.

Next we establish some results on the set of global maximizers.

Theorem 2. Let X ⊂ RN be convex, and let f : X → R be concave.
Then the set argmax{f(x)|x ∈ X} of maximizers of fon X is either empty or convex.

Proof. Suppose argmax{f(x)|x ∈ X} is nonempty. We will show that it must be convex.
Suppose x1 and x2 are both maximizers of f on X. Then, we have f(x1) = f(x2).
By concavity, for any θ ∈ (0, 1) we have:

f(θx1 + (1− θ)x2) ≥ θf(x1) + (1− θ)f(x2) = f(x1).

This must hold with equality or else x1 and x2 would not be maximizers. Thus the set of maxi-
mizers contains θx1 + (1− θ)x2 for any θ ∈ (0, 1) and therefore must be convex.

In other words, in convex optimization problems, we cannot have multiple isolated points as
maximizers.

Finally, we show that a strictly concave objective function has at most one unique maximizer.

Theorem 3. Let X ⊂ RN be convex, and let f : X → R be strictly concave.
The set argmax{f(x)|x ∈ X} of maximizers of fon X is either empty or contains a single point.
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Proof. Suppose argmax{f(x)|x ∈ X} is nonempty. Let x1 be a maximizer of f on X. We will
show that there can be no other maximizers.

Suppose x2 is also a maximizer f on X and x2 ̸= x1. Then f(x1) = f(x2).
By strict concavity, for any θ ∈ (0, 1) we have:

f(θx1 + (1− θ)x2) > θf(x1) + (1− θ)f(x2) = f(x1).

But this is a contradiction of x1 being a maximizer.

Conclusion. To conclude, in convex optimization problems, all local optima must also be
global optima. Therefore in order to find a global maximum it suffices to find a local maximum.

Furthermore, if the objective function is strictly concave, then if the problem admits a solu-
tion, the solution is unique.
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