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In the previous lectures we studied the basic, bare-bones RBC model and explored its empiri-
cal implications. In this lecture we consider two early extensions of the RBC which help reconcile
the model with some of discrepancies in the data. In particular we study: (i) indivisible labor and
lotteries, and (ii) variable capital utilization.

1 Indivisible Labor and Lotteries

An early criticism of the RBC model was that it is unable to match the observed volatility of labor
over the business cycle. This is because the standard RBC model with a representative household
with only an intensive-margin of labor supply would require relatively high elasticities of labor
supply to match the observed high variability of hours worked together with the low variability of
real wage rates. Exercises by MaCurdy (1981) and Altonji (1986) demonstrated that this could not
be possible with the standard estimates of labor supply elasticities from the micro data, which
were much smaller than required by the macro data. Some claimed that this inconsistency was
evidence against the entire RBC approach; see e.g. Summers (1986).

Heckman (1984) (in a discussion of Ashenfelter and Kydland) instead suggested that the key
underlying issue was that models being used in both micro and macro were abstracting from
the extensive margin of labor adjustment, and that this omission was likely important. Shortly
after Heckman’s discussion, macroeconomists found a way to tractably introduce an extensive
margin of labor supply into models. Rogerson (1988) was the first to introduce an indivisible la-
bor assumption and model an extensive margin of labor adjustment. Building on the theoretical
insights of Rogerson (1988), Hansen (1985) introduced the indivisible labor assumption into an
otherwise standard RBC model.1

1.1 Setup without lotteries

Rogerson (1988) introduces indivisible labor supply. Consider a simple static model (single time
period). There is a continuum of identical agents, indexed by i ∼ U [0, 1]. The representative
firm’s production function is given by

Y = F (K,L)
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Each agent’s household utility is given by

u(c)− v(ℓ)

where c ≥ 0 and ℓ ∈ {0, 1} is indivisible. We assume

v(0) = 0

v(1) = m > 0

We assume indivisible labor: individuals can either work some given positive number of hours
or not work at all; they are unable to work an intermediate number of hours. In other words,
labor may only adjust along the extensive margin and cannot adjust along the intensive margin.
This assumption is motivated by the observation that most people either work full time or not at
all.

Each household is endowed with 1 unit of capital which it chooses to rent out to the firms.
We define the feasibility set for each household as

X = {c, ℓ, k|c ≥ 0, ℓ ∈ {0, 1}, k ∈ [0, 1]} (1)

The household’s problem is thus to maximize

max
c,l,k∈X

u(ci)−mℓi

subject to
ci ≤ wℓi + rki.

Note that the household will clearly choose k = 1.2

There is a representative firm with technology Y = F (K,L).

Definition 1. A competitive equilibrium is a set of allocations and prices such that
(i) households maximize utility subject to their budget sets and feasibility set (1).
(ii) firms maximize profits,

max
K≥0,L≥0

F (K,L)− rK − wL,

(iii) and markets clear

K =

∫
kidi = 1, L =

∫
ℓidi,

∫
cidi = Y = F (K,L)

Note that the feability set for labor is a non-convex set. As a result, the second welfare theo-
rem cannot be applied. That is, the Pareto optimal allocation in this environment cannot neces-
sarily be decentralized as a competitive equilibrium.

2The only reason Rogerson includes capital is to allow for a CRS technology together with diminishing marginal
product of labor.
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1.2 Setup with Lotteries

Rogerson (1988) further shows that lotteries are necessary to implement Pareto optimal alloca-
tions in this environment. This in turn implies an aggregate labor supply that is infinitely elastic
with respect to the (real) wage.

Consider the same environment as above, except that the feasible set is now expanded by
introducing a specific class of lotteries. Consider the following lottery. An element in the house-
hold’s consumption set may now be written as

{(c1, 1, 1), (c2, 0, 1), ϕ} ∈ X̄

which describes the following lottery:

• with probability ϕ, the agent consumes c1, supplies 1 unit of labor (is employed), and sup-
plies capital k1 = 1.

• with probability 1 − ϕ, the agent consumes c2, supplies 0 units of labor (is unemployed),
and supplies capital k2 = 1.

This lottery essentially convexifies the feasibility set.
Furthermore, we assume agents can purchase insurance for this income uncertainty.3 The

household’s budget constraints must satisfy

c1 ≤ w + r − x1

c2 ≤ r + x2

where x1 is the premium they pay the insurer in the employed state and x2 is the amount they
receive from the insurer in the unemployed state. Actuarially fair insurance (insurers make zero
profit) implies

π = ϕx1 − (1− ϕ)x2 = 0.

Substituting for x1 and x2 from the budget contraints into this expression yields

ϕ(c1 − w − r)− (1− ϕ)(r − c2) = 0

Therefore, the budget constraint of the household reduces to

ϕc1 + (1− ϕ)c2 = ϕw + r

As a result, we may write the household’s problem as follows

max
c1,c2,ϕ

ϕ(u(c1)−m) + (1− ϕ)u(c2)

3Equivalently there are Arrow-Debreu securities contingent upon individual outcomes of the lottery. In other
words, markets are complete.
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subject to
ϕc1 + (1− ϕ)c2 = ϕw + r

and
c1 ≥ 0, c2 ≥ 0, ϕ ∈ [0, 1].

The firm’s problem clearly remains the same. Market clearing is given by:

K = ϕk1 + (1− ϕ)k2

L = ϕ

F (K,L) = ϕc1 + (1− ϕ)c2

Lemma 1. The household’s optimal plan will have c1 = c2.

Proof. FOCs to household’s problem are given by

ϕu′(c1)− λϕ = 0

(1− ϕ)u′(c2)− λ(1− ϕ) = 0

Thus, c1 = c2.

The household fully insures. (Alternatively, you could think of the representative house-
hold as a “big family” that decides how many of its members to send to work, but all mem-
bers consume the same amount.) Using this optimal consumption plan along with the fact that
k1 = k2 = 1 we reduce the competitive equilibrium of this economy to the following.

Definition 2. A competitive equilibrium is a set of allocations and prices such that
(i) households maximize utility

max
c,ϕ

u(c)−mϕ

subject to
c = wϕ+ r

c ≥ 0 and ϕ ∈ [0, 1].
(ii) firms maximize profits

max
K≥0,L≥0

F (K,L)− rK − wL,

(iii) and markets clear

K = 1, L = ϕ, c = Y = F (K,L).

1.3 A Useful Isomorphism

Note that the above equilibrium is identical to the one that would obtain for an economy with
technology

F (1, L)
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and a representative agent with utility given by

u(C)−mL

with
C ≥ 0, and 0 ≤ L ≤ 1

This economy has zero non-convexities. Therefore, one can then define the planners problem
for this isomorphic economy as the following.

The Planner’s Problem.
max
c,ℓ

u(C)−mL

subject to
C ≤ F (1, L)

The solution to this planner’s problem is identical to the competitive equilibrium allocation in
the economy with indivisible labor and lotteries.

1.4 Implications for Aggregate Fluctuations

Why is this idea useful? As we said, one of the earliest criticisms of the RBC model is its inability
to account for observed relative magnitudes of fluctuations in total labor supply. In order to
generate large fluctuations in labor, the model must be calibrated with a high elasticity of labor
supply, around 2-4. However, microeconomic studies at the time had already estimated that the
elasticity of labor supply is rather low, around 0 to .5. Thus estimates of the elasticity of labor
supply using micro data are much smaller than that required to reconcile RBC models with the
data on aggregate fluctuations.

The Rogerson (1988) model of individisible labor and lotteries is a new mechanism that al-
lows a high aggregate elasticity of labor supply to be compatible with low labor supply elasticities
for individual workers. Hansen (1985), building off of Rogerson (1988)’s theoretical insight, ap-
plied this idea to the otherwise standard RBC and explored its quantitative implications.

Parenthesis. The Elasticity of Labor Supply. Consider the representative household (as in
the original RBC model) and suppose the household’s preferences are additively-seperable and
given by

u(c)− ℓ1+ϵ

1 + ϵ
.

In this case, the household’s intratemporal condition is

ℓϵ

u′ (c)
= w.
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That is, the marginal rate of substitution between consumption and labor is equal to the wage
rate. Abstracting from the income effect, we may write

log ℓ =
1

ϵ
logw + · · ·

Thus it is easy to see that the Frisch elasticity of labor supply is 1
ϵ . That is, 1/ϵ parameterizes how

labor supply responds to the wage (holding the wealth effect constant). Note that

lim
ϵ→0

1

ϵ
= ∞

Thus, a utility function that is linear in labor has an infinite elasticity of labor supply. However,
estimates from micro data suggest an extremely low elasticity of labor supply; Altonji (1986).

Reconciling the RBC with the data. Indivisibilities (i.e. non-convexities) in labor and lotteries
may help reconcile the RBC with the data. Note that in the original economy, the utility function
of the individual household was

u(c)− v(ℓ)

with ℓ ∈ {0, 1}. However, we have just proven that this economy behaves as though there is a
single representative agent with preferences given by

u(c)−mℓ

These preferences are quasilinear in labor, and hence has infinite elasticity of labor supply. There
is thus a discrepancy between the true preferences of agents, v(ℓ), which could have been pa-
rameterized with a low elasticity of labor, and the preferences of the hypothetical representative
household generating aggregate fluctuations.

A very high macro elasticity of labor supply may be independent of the labor supply elasticity
of individual workers. This property results from the fact that in the model all variation in hours
worked comes from the extensive margin, i.e., from workers moving in and out of the labor force.
The elasticity of labor supply of an individual worker, i.e. the answer to the question “if your
wage increased by one percent, how many more hours would you choose to work?,” is irrelevant,
because the number of hours worked is not a choice variable.

As a result, the model with indivisibilities in labor behaves as if there were a representative
household with infinite elasticity of labor. With infinite elasticity of labor, the RBC model can
generate a huge response of aggregate labor to an innovation in productivity. See the following
figure from Hansen (1985).

Remarks. The standard RBC model adopts a rudimentary description of the labor market:
firms hire workers in competitive spot labor markets and there is no unemployment. The
Hansen (1985)-Rogerson (1988) extension with indivisibilities of labor supply does in fact gen-
erate unemployment. However, one unattractive feature of the model is that participation in
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Table 1 

Standard deviations in percent (a) and correlations with output (II) for U.S. and artificial 
economies. 

Quarterly U.S. rime series’ Economy with Economy with 
(55.3-84.1) divisible labo? indivisible laborh 

Scrics (a) (b) (a (b) (a) (b) 

OulpuI 1.76 1.00 1.35 (0.16) 1.00 (0.00) 1.76 (0.21) 1.00 (0.00) 
Consumption 1.29 0.85 0.42 (0.06) 0.89 (0.03) 0.51 (0.08) 0.87 (0.04) 
lnvestmcnl 8.60 0.92 4.24 (0.51) 0.99 (0.00) 5.71 (0.70) 0.99 (0.00) 
Capital stock 0.63 0.04 0.36 (0.07) 0.06 (0.07) 0.47 (0.10) 0.05 (0.07) 
Hours 1.66 0.76 0.70 (0.08) 0.98 (0.01) 1.35 (0.16) 0.98 (0.01) 
Productivily 1.18 0.42 0.68 (0.0X) 0.98 (0.01) 0.50 (0.07) 0.87 (0.03) 

“The U.S. time series used are real GNP. total consumption expenditures. and gross private domestic 
investment (all in 1972 dollars). The capital stock series includes nonresidential equipment and structures. 
The hours series includes total hours for persons 81 work in non-agricultural industries as derived from the 
CWWW Popctluriott Sun~,r. Productivity is output divided by hours. All series arc seasonally adjusted. 
logged and dctrcndcd. 

hThc standard deviations and correlations with output arc sample mcnns of statistics computed lor each 
of 100 simulations. Each simulation consists of 115 periods. which is the same number of periods as the 
U.S. sample. The numbers in parcnthcscs arc sample standard deviations of these statistics. Before 
computing any statistics each simulated time series was logged and dctrcndcd using the same procedure 
used lor the U.S. time series. 

trend. The ‘detrending’ procedure used is the method employed by Hodrick 
and Prescott (1980).‘* 

Since much of the discussion in this section centers on the variability of 
hours worked and productivity (output divided by hours worked), some 
discussion of the hours series is appropriate. The time series for hours worked 
used in constructing these statistics is derived from the Current Population 
Survey, which is a survey of households. This series was chosen in preference to 
the other available hours series which is derived from the establishment stiey. 
The hours series based on the household survey is more comprehensive than 

“This method involves choosing smoothed values ( s, $. 1 for the series ( x,}T- 1 which solve the 
following problem: -_ 

min (l/r~~(r.-.,)‘+(h/r)~~~[(2*I-~,)-(+-4-~)12), 
I t-1 

where X > 0 is the penalty on variation, where variation is measured by the average squared second 
difference. A larger value of X implies that the resulting (3,) series is smoother. FollowGig 
Prescott (1983). I choose A= 1600. Deviations from the smooth series are form&l by taking 
d, - x, -s,. 

This method is used in order to filter out low frequency fluctuations. Although other methods 
(spectral techniques, for example) are available. this method was chosen because of its simplicity 
and the fact that other methods lead to basically the same results [see Prescott (1983)]. 

the labor force is dictated by a lottery that makes the choice between working and not working
convex.

An important research topic at the interface between macroeconomics and labor economics
is understanding the role of wages and the dynamics of unemployment. Search and matching
models—referred to as the Diamond-Mortensen-Pissarides Model—have emerged as a frame-
work that is suitable for understanding not only the dynamics of unemployment, but also the
properties of vacancies and of flows in and out of the labor force. Diamond, Mortensen, and Pis-
sarides were awarded the Nobel prize for their work in 2010. See the original work by Diamond
(1982), Mortensen (1982), Pissarides (1990), and Mortensen and Pissarides (1994).
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2 Capital Utilization

The RBC models short-run fluctuations as movements in the economy’s production func-
tion–booms and busts are due to exogenous shocks in TFP. Given the model, the Solow residual
is supposed to measure these movements in technology. However, the Solow residual is sim-
ply a residual—it is not a true measure of productivity; in particular the following measurement
issues should be considered:

• Variation in the Solow residual probably captures variation in various inputs beyond the
standard K and L. e.g., energy, materials, capital utilization, etc.

• The Solow residual can be predicted by military spending, monetary policies, etc. (e.g.,
Hall, 1988, Evans, 1992)

• The Solow residual implies implausibly high probability of technological regress. Remem-
ber, recessions are caused by negative productivity shocks.

• Plant-level measurements of productivity suggest much smaller volatility (e.g., Basu and
Kimball, 1997)

• Proxies of capital utilization such as electricity consumption or proxies of labor hoard-
ing/effort such as accidents and time-use are highly procyclical (e.g., Burnside, Eichen-
baum and Rebelo, 1993, 1996; Basu and Kimball, 1997)

Thus, one possible resolution to these issues is the following. By adding variation in capital
utilization, labor hoarding or other unmeasured inputs we can amplify the impact of small pro-
ductivity shocks, leading to highly volatile Solow residuals.

We proceed by adding a new input into the technology:

y(st) = z(st)F (x(st)kt(s
t−1), ℓ(st))

where z(st) is the “true” TFP shock and x(st) represents endogenous capital utilization.
The cost of higher capital utilization is faster depreciation:

kt+1(s
t) = [1− δ(x(st))]kt(s

t−1) + i(st)

where the depreciatioin function, δ(x), is increasing and convex in utilization:

δ′, δ′′ > 0.

The resource constraint is therefore given by

c(st) + kt+1(s
t) = [1− δ(x(st))]kt(s

t−1) + z(st)F (x(st)kt(s
t−1), ℓ(st))

In this case, the optimality (or equilibrium) condition for capital utilization is given by

z(st)FK(st)kt(s
t−1) = δ′(x(st))kt(s

t−1)
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which reduces to
z(st)FK(st) = δ′(x(st)) (2)

Next, suppose we specify the following Cobb-Douglas production function and homothetic
depreciation function:

F (xk, ℓ) = (xk)αℓ1−α

δ(x) = µ
x1+ξ

1 + ξ
.

for some α ∈ (0, 1), ξ > 0, and constant µ > 0. Note that ξ → ∞ is the benchmark case with
no movement in capital utilization, whereas ξ → 0 is the opposite extreme of completely linear
depreciation in utilization.

Then, using these functional forms in our optimality condition (2) we get.

α
y(st)

x(st)kt(st−1)
= µx(st)ξ

Next, we normalize µ = α (as µ is just a constant). Solving for capital utilization we get:

x(st) =

(
y(st)

kt(st−1)

)1/(1+ξ)

Plugging this into the production function gives us

y(st) = z(st)
1+ξ

1−α+ξ kt(s
t−1)

αξ
1−α+ξ ℓ(st)

1− αξ
1−α+ξ

This leads us to the following reduced-form production function:

y(st) = z(st)
ηkt(s

t−1)α̂ℓ(st)1−α̂

where

η ≡ 1 + ξ

1− α+ ξ
> 1 and α̂ ≡ αξ

1− α+ ξ
< α.

Note that:
∂η

∂ξ
< 0

∂α̂

∂ξ
> 0

That is, in the benchmark with no capital utilization, ξ → ∞, we have:

η → 1 and α̂ → α

Whereas in the limit with linear depreciation, ξ → 0, we have:

η → 1

1− α
and α̂ → 0

In this limit, the effect of productivity is amplified, and production becomes almost linear in
labor.
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Why is this important? The Solow residual mismeasures true productivity; true productivity
can be much less volatile than measured Solow residual. We can thus recalibrate the RBC model
with lower volatility in productivity. A lower ξ implies higher volatility in the Solow residual for
any given volatility in true TFP, z(st), which in turn generates larger fluctuations from smaller
primitive shocks.

Note that there is another indirect effect of this mechanism: a lower ξ implies a lower α̂. Thus,
the demand for labor becomes more elastic in response to the wage. The equilibrium conditions
for labor are given by:

(1− α̂)z(st)
ηkt(s

t−1)α̂ℓ(st)−α̂ = w(st) =
ℓ(st)ϵ

u′(c(st))
,

where I have assumed homothetic disutility of labor of the household:

v(ℓ) =
ℓ(st)1+ϵ

1 + ϵ

with ϵ > 0. Solving this for labor and writing in logs we get:

log ℓ(st) =
1

ϵ+ α̂
[η log z(st) + · · · ]

A lower ξ implies both a lower α̂ and a higher η. As a result, equilibrium employment responds
more strongly to movements in true productivity z(st).

Therefore, with variable capital utilization, output responds more to true productivity for two
reasons: both the direct effect and an indirect effect through labor demand.
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