
Theorem of the Maximum

Jennifer La’O*

These lecture notes draw on material found in Chapter 3 Stokey, Lucas and Prescott (1989)
and Chapter 9 of Sundaram (1996).

1 Problems we are interested in

Recall from Lecture Notes 1 that a correspondence Γ from a setX into a setY , denotedΓ : X → Y ,
is a rule that assigns to each x ∈ X a set Γ(x) ⊂ Y .

Let X ⊆ Rn and let Y ⊆ Rm and let

φ : X × Y → R

be a (single-valued) function and let
Γ : X → Y

be a non-empty correspondence. Our interest is in problems of the form

sup
y∈Γ(x)

φ(x, y).

where φ is the objective function, y is the “choice” or “control” variable, x is the state variable,
and Γ describes the constraint set for y given x. Intuitively one should think of the state variable
as anything that the decision maker takes as given when making their decision. On the other
hand, the decision maker has control over the choice variable y.

Example. A standard example is in consumer theory. One can think of y = c = (c1, c2, . . . , cM )

as a vector of M consumption goods, i.e. a consumption bundle, and x = (p, I) as a vector
of prices for these goods, p = (p1, p2, . . . , pM ) and the income I of the consumer. In this case
the objective function would be the utility from consumption: φ(x, y) = U(y) = U(c). The
constraint set Γ(x) = Γ(p, I) would denote the consumer’s budget set given prices p and income
level I. Specifically:

Γ(p, I) = {c ∈ RM
+ |p · c ≤ I}. (1)
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1.1 Application of Weierstrass

If for each x ∈ X, φ(x, ·) is continuous in y and the set Γ(x) is nonempty and compact, then
thanks to the Weierstrass Theorem for each x the maximum is attained. In this case the function

h(x) = max
y∈Γ(x)

φ(x, y)

is well-defined, and the set of maximizers

G(x) = {y ∈ Γ(x)|φ(x, y) = h(x)},

is non-empty. We say that G(x) is the set of y values that solve the problem given x, and h(x) is
the maximum.

Example. Going back to our consumer theory example, one typically assumes that the utility
function U is continuous. It is trival that the budget set Γ(p, I) defined in (1) is nonempty and
compact (it’s clearly bounded and its complement is open). Therefore the function

v(p, I) = max
c∈Γ(p,I)

U(c)

is well-defined, and
c∗(p, I) = {c ∈ Γ(p, I)|U(c) = v(p, I)}

is non-empty. In consumer theory we typically call v(p, I) the indirect utility function and c∗(p, I)
the demand correspondence (and when single-valued we call it the demand function).

1.2 The question

We are interested in the following question: under what conditions do h(x) and G(x) vary con-
tinuously with the state x? At an intuitive level, one would think that in order to obtain continuity
of the solution to the maximization problem, one would need some degree of continuity of the
primitives, φ and Γ, of the problem.

We’ve already studied to a certain extent the continuity of functions, but we have not yet
considered what it means for a correspondence to be continuous. We do this next.

2 Upper and Lower Hemi-Continuity

Let X ⊆ RN and let Y ⊆ RM with the Euclidean norms.

Definition 1. A correspondence Γ : X → Y is said to be:
(i) closed-valued at x ∈ X if Γ(x) is a closed set,
(ii) compact-valued at x ∈ X if Γ(x) is a compact set,
(iii) convex-valued at x ∈ X if Γ(x) is a convex set.
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A correspondence is closed-valued if it is closed-valued at every point x ∈ X, it is compact-
valued if it is compact-valued at every point x ∈ X, and it is convex-valued if it is convex-valued
at every point x ∈ X.

Exercise 1. Consider the correspondence Γ(p, I) defined in (1) that represents the consumer’s
budget set in our consumer theory example. We have already established that Γ(p, I) is non-
empty and compact-valued. Show that it is also convex-valued.

We now define two notions of continuity.

Definition 2. A correspondence Γ : X → Y is lower hemi-continuous (l.h.c.) at x ∈ X if, for
every y ∈ Γ(x) and every sequence xn → x there exists N ≥ 1 and a sequence {yn}∞n=Nsuch that

yn → y and yn ∈ Γ(xn), ∀n ≥ N.

Definition 3. A compact-valued correspondence Γ : X → Y is upper hemi-continuous (u.h.c.)
at x ∈ X if Γ(x) is nonempty and if, for every sequence xn → x and every sequence {yn}∞n=1 such
that yn ∈ Γ(xn) for all n ≥ 1, there exists a convergent subsequence of {yn} whose limit point y
is in Γ(x).

Definition 4. A correspondence Γ : X → Y is continuous at x ∈ X if it is both u.h.c. and l.h.c. at
x. A correspondence is continuous if it is continuous at every point x ∈ X.

In order to visualize these definitions, consider Figure 1. Figure 1 displays a correspondence
that is l.h.c. but not u.h.c. at x1 and is u.h.c. but not l.h.c. at x2. The correspondence in the figure
is both u.h.c. and l.h.c. at all other points.

A correspondence Γ : X → Y is called l.h.c, u.h.c., or continuous if it has that property at every
point x ∈ X.

In Figure 1, the correspondence is l.h.c but not u.h.c at x1 and u.h.c but not l.h.c at x2.

Figure 1: Lower- and hemi - continuity

Exercise 1. Show that:
a. if Γ is single valued and u.h.c., then it is continuous.

b. if Γ is single valued and l.h.c., then it is continuous.

The next exercise shows some of the relationship between constraints stated in terms of inequal-
ities involving continuous functions and those stated in terms of continuous correspondences. These
relationships are extremely important for many problems in economics where constraints are often
stated in terms of productions functions, budget constraints, and so on.

Exercise 2.
a. Let Γ : R+ 7→ R+ be defined by Γ(x) = [0, x]. Show that Γ is continuous.

b. Let fi : RK+ 7→ R+, be a continuous functions and define the correspondence Γ : RK+ 7→ R+ by
Γ(x) = [0, f(x)]. Show that Γ is continuous.

We are now ready to answer under what conditions do the function v(x) defined in (1) and the
associated set of maximising values G(x) defined in (2) varies continuously with x.

Theorem 1 (Theorem of the Maximum). Let X ⊂ RL and Y ⊂ RK , let f : X × Y 7→ R be a
continuous function and Γ : X 7→ Y be a compact-valued and continuous correspondence. Then the
function v : X 7→ R defined in (1) is continuous, and the correspondence G : X 7→ Y defined in (2)
is nonempty, compact valued, and u.h.c.

Proof: Q.E.D.

Example 3. Let X = R and Γ(x) = Y = [−1, 1], all x ∈ X. Define f : X×Y 7→ R by f(x, y) = xy2.
Then,

G(x) =





{−1, 1} if x > 0
[−1, 1] if x = 0
{0} if x < 0

We show G(x) is u.h.c. at x = 0. First note that Γ(0) is nonempty and compact valued. Let xn → 0
be arbitrary. Let yn ∈ Γ(xn). Suppose there is a subsequence {xnk

}∞k=1 such that xnk
< 0 for all k.

Then ynk
= 0 for all k and so there exists a subsequence of {yn} that converges to 0 ∈ Γ(0). Suppose

there is a subsequence {xnk
}∞k=1 such that xnk

> 0 for all k. It follows that there exists a convergent
subsequence of {ynk

}∞k=1 that converges to either 1 ∈ Γ(0) or −1 ∈ Γ(0). We conclude G(x) is u.h.c.
at x = 0.
To see G(x) is not l.h.c choose y = 0.5 ∈ Γ(0). Let xn → 0 be a sequence such that xn < 0 for all
n ∈ N. Hence, yn = 0 for all n ∈ N. Hence it cannot be the case that yn → y = 0.5.
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Figure 1. An illustration of u.h.c. and l.h.c.

Exercise 2. Show that if Γ is single-valued and u.h.c., then it is a continuous function.

Exercise 3. (a) Let Γ : R+ → R+ be defined by Γ(x) = [0, x]. Show that Γ is continuous.
(b) Let f : R+ → R+ be a continuous function. Define the correspondence Γ : R+ → R+ by

Γ(x) = [0, f(x)]. Show that Γ is continuous.
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3 Theorem of the Maximum

We are now ready to answer under what conditions do h(x) and G(x) vary continuously with x.
The following theorem is called the Theorem of the Maximum.

Theorem 1. ( The Theorem of the Maximum.) Let X ⊆ RN and let Y ⊆ RM .
Let φ : X × Y → R be a continuous function, and let Γ : X → Y be a nonempty, compact-

valued, and continuous correspondence.
Then the function h : X → R defined by:

h(x) = max
y∈Γ(x)

φ(x, y) (2)

is continuous, and the correspondence G : X → Y defined by:

G(x) = {y ∈ Γ(x)|φ(x, y) = h(x)}. (3)

is non-empty, compact-valued, and upper-hemi-continuous.

Proof. Note that for each x ∈ X, the set Γ(x) is nonempty and compact and the function φ(x, ·)
is continuous in y. By the Weierstrass Theorem the maximum is attained and the set G(x) of
maximizers is nonempty.

Next G(x) ⊆ Γ(x) and Γ(x) is compact. It follows that G(x) is bounded.
We next show that G(x) is closed. Consider a sequence {yn} in that converges to y ∈ Y and

yn ∈ G(x) for all n. Since Γ(x) is closed, y ∈ Γ(x). Also since h(x) = φ(x, yn) for all n and φ

is continuous in y, it follows that φ(x, y) = h(x). But this implies that y ∈ G(x). Hence G(x) is
closed. G(x) is closed and bounded, therefore G(x) is compact.

We next show that G(x) is u.h.c. Fix x ∈ X and let {xn} be any sequence converging to
x. Construct a sequence {yn} such that yn ∈ G(xn) for all n. Since Γ is u.h.c., there exists a
subsequence of {yn} whose limit point y is in Γ(x). Call this subsequence {ynk

}.
Let z ∈ Γ(x). Since Γ is l.h.c., there exists N ≥ 1 and a sequence {zn}∞n=Nsuch that

zn → z and zn ∈ Γ(xn), ∀n ≥ N.

Therefore every subsequence of {zn} converges to z. Take the subsequence {znk
} → z ∈ Γ(x).

Since φ(xnk
, ynk

) ≥ φ(xnk
, znk

) for all nk and φ is continuous, it follows that φ(x, y) ≥ φ(x, z).
Since this holds for any z ∈ Γ(x), it follows that y ∈ G(x). Hence G is u.h.c.

For the final part of this proof, to show that h is continuous, I refer you to the proofs provided
in Sundaram (1996) and Stokey, Lucas and Prescott (1989).

What does the Theorem of the Maximum mean? Roughly speaking the theorem tells us that
continuity in the primitives is inherited by the solutions to the problem, but not in its entirety:
some degree of continuity is lost in the process of optimization.

4



The Theorem of the Maximum under Convexity

Finally, if we make stronger assumptions on the primitives, we can obtain stronger results for
the solutions. For the following results, it is helpful to define the graph of a correspondence.

Definition 5. The graph of a correspondence Γ : X → Y is the set

A = {(x, y) ∈ X × Y |y ∈ Γ(x)}.

We now reconsider the Theorem of the Maximum in the context of convex optimization
problems. That is, we place convexity restrictions on the primitives, in addition to the conti-
nuity and compactness conditions required by the original theorem.

Theorem 2. ( The Theorem of the Maximum under Convexity.) Let X ⊆ RN and let Y ⊆ RM .
Let φ : X×Y → R be a continuous function and let Γ : X → Y be nonempty, compact-valued,

and continuous.
Let h : X → R be defined in (2) and G : X → Y be defined in (3).
(i) If φ(x, ·) is concave in y for every x and Γ is convex-valued, then the correspondence G :

X → Y is convex-valued and u.h.c.
(ii) If φ(x, ·) is strictly concave in y for every x and Γ is convex-valued, then the correspondence

G : X → Y is single-valued and u.h.c. By Exercise 2, it is a continuous function.
(iii) If φ(x, y) is concave on X × Y and Γ has a convex graph, then h : X → R is a concave

function. If “concave” is replaced with “strictly concave” then h is strictly concave.

Proof. Part (i). Fix x ∈ X and take y1, y2 ∈ G(x). Thus

φ(x, y1) = φ(x, y2) = h(x).

Let
y′ = θy1 + (1− θ)y2

for some θ ∈ (0, 1). Since Γ(x) is convex, y′ ∈ Γ(x). Then

φ(x, y′) = φ(x, θy1 + (1− θ)y2).

By concavity of φ(x, ·) in y,

φ(x, θy1 + (1− θ)y2) ≥ θφ(x, y1) + (1− θ)φ(x, y2) = θh(x) + (1− θ)h(x) = h(x).

Therefore
φ(x, y′) = h(x)

and as a result y′ ∈ G(x).
Part (ii). Fix x ∈ X. If φ(x, ·) is strictly concave in y and Γ(x) is convex, then the set of

maximizers
argmax{φ(x, y)|y ∈ Γ(x)}
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contains a single-point (see Lecture Notes 5 on convex optimization). Therefore G(x) is single-
valued. By the Theorem of the Maximum, it is u.h.c. By Exercise 2, it is a continuous function.

Part (iii). Let x1, x2 ∈ X. Let
x′ = θx1 + (1− θ)x2

for some θ ∈ (0, 1). Pick any y1 ∈ G(x1) and y2 ∈ G(x2). Let

y′ = θy1 + (1− θ)y2.

Next, since y1 ∈ Γ(x1) and y2 ∈ Γ(x2) and Γ has a convex graph, then we must have that

y′ ∈ Γ(x′),

meaning that given x′, the choice y′ is feasible but not necessarily optimal.
An optimum at x′ satisfies:

h(x′) ≥ φ(x′, y′) = φ(θx1 + (1− θ)x2, θy1 + (1− θ)y2)

By concavity of φ,

φ(θx1 + (1− θ)x2, θy1 + (1− θ)y2) ≥ θφ(x1, y1) + (1− θ)φ(x2, y2) (4)

= θh(x1) + (1− θ)h(x2)

Therefore
h(x′) ≥ θh(x1) + (1− θ)h(x2)

which establishes concavity of h. If φ is strictly concave, the inequality in (4) becomes strict,
proving strict concavity of h.

Therefore, analogous to the continuity results of the Theorem of the Maximum, the convexity
structure of the primitives is also inherited by the solutions, but again, not in its entirety.

Exercise 4. Consider the example in Exercise 3, part (b). Now let f : R+ → R+ be a bounded,
continuous function. Define the correspondence Γ : R+ → R+ by Γ(x) = [0, f(x)].

You have already shown that Γ is continuous. Now show that Γ is both compact-valued and
convex-valued. (This exercise is perhaps trivial, but it is an important case for what follows in
this class.)
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