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Thus far we have assumed throughout a representative household—a fairly standard as-
sumption in many macro models. However, underlying the representative household is an im-
plicit assumption that markets are complete.

In this lecture we examine the complete markets assumption and its implications. I follow
the treatment in Chapter 8 of Ljungqvist and Sargent (2004).

1 The Environment

As always, the environment consists of preferences and technology. In terms of technology, we
consider a simple endowment economy. Time is discrete t = 0, 1, . . .. In each period there is a
realization of a stochastic event,

st ∈ S

which we call the “state.” We let the history or sequence of events leading up to and including
time t be denoted by

st = (s0, s1, . . . , st).

The unconditional probability of observing a particular history st is given by

π(st)

This is the unconditional probability of history st from the standpoint of time 0.1 We assume
that all trade occurs after observing s0, which means that π(s0) = 1. At each point in time we
assume that the history st is publicly observable.

There are N agents indexed by i ∈ I ≡ (1, . . . , N). There is one consumption good. Each
agent i has a stochastic endowment of the consumption good given by yi(st) that depends on
the realization of the state st. The household has preferences defined over a complete history-
dependent consumption plan,

ci = {ci(st)}t,st .
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1We will write conditional probabilities as

π
(
st|sτ

)
which is the probability of observing st conditional on the realization of sτ .
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Preferences are given by

E0

∞∑
t=0

βtu(cit) =
∞∑
t=0

∑
st

βtπ(st)u(ci(st))

where E0 is the expectation conditional on s0. The period utility function u satisfies the
usual regularity conditions: it is increasing, strictly concave, and satisfies the Inada conditions,
limc→0 u

′(c) = ∞ and limc→∞ u′(c) = 0. Let us also assume it is twice differentiable to make our
lives easier.

There is no storage in this economy, the consumption good is perishable: this means that
the entire endowment in state st must be consumed today by the agents or thrown out.

Definition 1. An allocation in this economy is a complete history-dependent consumption plan
for each agent:

{ci}i∈I .

Definition 2. An allocation is feasible if it satisfies∑
i

ci(st) ≤
∑
i

yi(st) ∀t, st. (1)

This concludes our description of the environment.

Remark: History Dependence. One question we will be concerned with answering is whether
the household’s consumption exhibits history dependence. We say

Definition 3. A household’s consumption at history st is history-independent if depends only
on the current state st. Otherwise, we say that the household’s consumption at history st is
history-dependent.

Consumption at st is history-dependent if it depends not only on st but also on past states.
Note that each household’s endowment at time t depends only on the current realized state,

st. However, it would perhaps seem natural in equilibrium that the household’s consumption
at time t is history dependent—that is, household i’s consumption may depend on past shocks
and endowments. For example, you might think that if a household had a lucky streak of good
shocks in the past, it would have higher wealth today, which means that its consumption would
be high today (despite whatever is today’s current endowment).

2 The Planner’s Problem

Now that we have set up the environment we can first solve the planner’s problem; this will
give us the set of efficient (Pareto optimal) allocations. We will then compare the equilibrium
allocation to the planner’s allocation.

We thus consider a planner who attaches constant Pareto weights λi > 0 to each of the con-
sumers and then chooses allocations in order to maximize welfare. We define the set of Pareto
optimal allocations as follows.
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Definition 4. An allocation {ci}i∈I is Pareto efficient if it maximizes welfare

∑
i∈I

λi

[ ∞∑
t=0

∑
st

βtπ(st)u(ci(st))

]

subject to feasibility constraints ∑
i∈I

ci(st) =
∑
i∈I

yi(st) ∀t, st.

for some set of Pareto weights λ ≡ (λ1, . . . λN ).

Note that there is a feasibility constraint for every date and every history. Let βtπ(st)θ(st) be
the Lagrange multiplier on the feasibility constraint for time t and history st. We thus obtain the
Lagrangian

L =

∞∑
t=0

∑
st

{∑
i

λiβ
tπ(st)u(ci(st))− βtπ(st)θ(st)

(∑
i∈I

ci(st)−
∑
i∈I

yi(st)

)}

Taking FOCs wrt to ci
(
st
)

we get

λiβ
tπ(st)u′(ci(st))− βtπ(st)θ(st) = 0 ∀i, t, st

Therefore
λiu

′(ci(st)) = θ(st) ∀i, t, st

Taking the ratio of this condition for two agents i and j, we get

u′(ci(st))

u′(cj(st))
=

λj

λi
, ∀i, j, t, st. (2)

That is, the planner sets the marginal rate of substitution of consumption between the two
agents (or the ratio of marginal utilities) equal to the ratio of their Pareto weights. Therefore,
note that in the Pareto optimal allocation, the ratios of marginal utilities between pairs of agents
are constant across all histories and dates.

Solving (2) for cj(st) gives us

cj(st) = u′−1

[
λi

λj
u′(ci(st))

]
Finally, we can plug this into the feasibility condition for st. This gives us

∑
j

u′−1

[
λi

λj
u′(ci(st))

]
≤ Y (st) (3)

where Y (st) =
∑

i y
i(st) is the aggregate endowment at t, st.

This is the equation that determines ci(st). It only depends on the Pareto weights (which
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are constants) and the aggregate endowment at time t, state st. Since the right hand side is not
history dependent, it must be the case that the left hand side is not history dependent either!
Therefore, consumption of agent i, ci(st), depends only on the aggregate endowment in the cur-
rent state st and not on the individual’s entire history of income realizations. This is true for the
consumption of all agents.

Furthermore, note that equation (3) implicitly defines ci(st) as a function of Y (st), the aggre-
gate endowment at t, st. We thus obtain the following proposition.

Proposition 1. An efficient allocation is history-independent. Furthermore, in any efficient allo-
cation, ci(st) is a time-invariant function of the aggregate endowment Y (st).

Thus, in any Pareto optimal allocation, we have that each household’s consumption does not
exhibit any history dependence. Furthermore, the consumption of each household does not
even depend on its own endowment at st it is simply a function of the aggregate endowment!
Therefore, consumption of each agent is perfectly correlated with the aggregate endowment or
aggregate consumption.

CRRA Example. Suppose utility is homothetic:

u(c) =
c1−γ

1− γ

so that u′(c) = c−γ . Then Pareto optimality (2) implies that(
ci(st)

cj(st)

)−γ

=
λj

λi

Solving this for cj(st) we get

cj(st) =

(
λj

λi

)1/γ

ci(st)

Plugging this into the resource constraint, we have

∑
j

(
λj

λi

)1/γ

ci(st) = Y (st)

Therefore, we may solve for agent i’s consumption. It is given by

ci(st) = ϕiY (st)

where ϕi is a time and state-invariant constant given by.

ϕi =
λ
1/γ
i∑
j λ

1/γ
j
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Note that
∑

i ϕ
i = 1. Thus, with CRRA (homothetic) utility each agent simply consumes a con-

stant fraction of aggregate endowment (output). Agents face only aggregate risk in consumption;
they do not face any idiosyncratic risk.

3 Complete Arrow-Debreu Markets

We now look at how the Pareto optimal allocation can be attained as a competitive equilibrium
in a market with Arrow-Debreu securities.

Trading arrangements.

One could consider different trading arrangements and the competitive equilibrium that arises
under these different structures. Consider two possible trading arrangements. The first trading
arrangement will be one in which a market opens at time 0 and agents trade contingent claims
to consumption for all times and all possible histories. After time 0, no further trades occur.
We call this an Arrow-Debreu market structure: the dated contingent claims are called Arrow-
Debreu securities; see Arrow and Debreu (1954); McKenzie (1954, 1959).

Another possible trading arrangement is one with sequential trade. In this market, trading
occurs in every period, and agents trade only one-period ahead state contingent claims to con-
sumption. This is called an Arrow market structure: the one-period ahead claims are called
Arrow securities.

Both trading structures are complete market economies. In this lecture I will consider only
the former: the Arrow-Debreu market. However, the two trading arrangements (sequential trade
and Arrow-Debreu dated contingent-claims) are in fact equivalent; see Ljungqvist and Sargent
(2004).

Arrow-Debreu Contingent Claims Market.

The Arrow-Debreu market works as follows. A market opens at time 0 in which all households
may trade dated history-contingent claims to consumption. There exists a complete set of these
securities, which we call Arrow-Debreu securities.

Specifically, a household can buy (or sell) a claim to one unit of consumption at time t, con-
tingent on history st. We denote the price of this claim as q(st): it is the price at time 0 of one unit
of consumption at time t, history st. We call these prices Arrow-Debreu prices. The household’s
budget constraint at time 0 is thus given by

∞∑
t=0

∑
st

q(st)ci(st) ≤
∞∑
t=0

∑
st

q(st)yi(st)

Note that this is a single budget constraint! All trade in this contingent claims market occurs at
time 0. After time 0, trades that were agreed to at time 0 are executed, but no more trades occur.
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We may thus write the household’s problem as follows. The household chooses consumption
to maximize its expected utility

∞∑
t=0

∑
st

βtπ(st)u(ci(st))

subject to its budget constraint

∞∑
t=0

∑
st

q(st)ci(st) ≤
∞∑
t=0

∑
st

q(st)yi(st)

We can normalize the price of consumption at time 0 to 1:

q0(s0) = 1

Therefore, the price system is in units of the time-0 consumption good.

Definition 5. A competitive equilibrium is an allocation

{ci}i∈I .

and a price system
{q(st)}t,st

such that:
(i) given the price system, the allocation solves each household’s problem, and
(ii) prices clear all markets.∑

i

q(st)ci(st) ≤
∑
i

q(st)yi(st) ∀t, st.

Note that market clearing implies that the economy’s feasibility conditions (1) hold.
For household i’s single budget constraint, let us attach µi as the Lagrange multiplier. We

thus obtain the following first order conditions with respect to ci(st):

βtπ(st)u′
(
ci(st)

)
− µiq(s

t) = 0, ∀t, st (4)

Taking the ratio of equation (4) for agents i and j implies

u′
(
ci(st)

)
u′ (cj(st))

=
µi

µj

Thus, in the competitive equilibrium as in the pareto optimal allocation, the ratios of marginal
utilities between pairs of agents are constant across all histories and dates. Again, solving this
for cj(st) gives us

cj(st) = u′−1

[
µj

µi
u′(ci(st))

]
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Substituting this into our market clearing condition for t, st gives us

∑
j

u′−1

[
µj

µi
u′(ci(st))

]
≤ Y (st)

Again, this is the equation that determines ci(st) in the competitive equilibrium. The following
proposition is then immediate.

Proposition 2. The competitive equilibrium allocation is not history dependent. Furthermore, it
is a time-invariant function of the aggregate endowment Y (st).

Pareto optimality of the equilibrium allocation. Finally, we can compare the competitive
equilibrium allocation to the set of pareto optimal allocations. The next proposition should be
immediately obvious.

Proposition 3. A competitive equilibrium allocation is a particular Pareto efficient allocation
that sets the Pareto weights λi = 1/µi for all i, where µi is the unique (up to multiplication by a
positive scalar) set of Lagrange multipliers (shadow values of wealth) associated with the compet-
itive equilibrium.

Furthermore at the competitive equilibrium allocation, the shadow prices βtπ(st)θ(st) for
the associated planning problem are equal to the Arrow-Debreu prices q(st) associated with the
competitive equilibria.

This result should come as no surprise: the fact that the allocations for the planning problem
and the competitive equilibrium are aligned reflects the two fundamental theorems of welfare.

CRRA Example. Again suppose that agents have homothetic utility. Then in the competitive
equilibrium (as in the pareto optimal allocation)

cj(st) = ci(st)

(
µi

µj

) 1
γ

Therefore, we will again have that

∑
j

(
µi

µj

)1/γ

ci(st) = Y (st)

so that consumption of each agent is again a constant fraction of the aggregate endowment,

ci(st) = ϕiY (st)

and this fraction ϕi assigned to each individual is independent of both time and state. Individual
consumption is then perfectly correlated with aggregate consumption. Again agents face only
aggregate risk in consumption–they do not face any idiosyncratic risk.
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No Aggregate Shocks Example. Let st be drawn independently each period from the U [0, 1]

distribution. Suppose there are two households, whose endowment processes are given by

y1(st) = st and y2(st) = 1− st

In this case, the aggregate endowment Y (st) = y1(st)+y2(st) = 1 is constant across all states.
In this economy then, the Pareto optimal allocation will have both c1(st) and c2(st) are constant
over time (despite each household having random endowments). That is, there is complete risk
sharing.
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